import gradio as gr from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification from torchvision import transforms import torch from PIL import Image # Ensure using GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Load the model and processor image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") model = model.to(device) clf = pipeline(model=model, task="image-classification", image_processor=image_processor, device=device) # Define class names class_names = ['artificial', 'real'] def predict_image(img, confidence_threshold): print(f"Type of img: {type(img)}") # Debugging statement if not isinstance(img, Image.Image): raise ValueError(f"Expected a PIL Image, but got {type(img)}") # Convert the image to RGB if not already if img.mode != 'RGB': img_pil = img.convert('RGB') else: img_pil = img # Resize the image img_pil = transforms.Resize((256, 256))(img_pil) # Get the prediction prediction = clf(img_pil) # Process the prediction to match the class names result = {pred['label']: pred['score'] for pred in prediction} # Ensure the result dictionary contains both class names for class_name in class_names: if class_name not in result: result[class_name] = 0.0 # Check if either class meets the confidence threshold if result['artificial'] >= confidence_threshold: return f"Label: artificial, Confidence: {result['artificial']:.4f}" elif result['real'] >= confidence_threshold: return f"Label: real, Confidence: {result['real']:.4f}" else: return "Uncertain Classification" # Define the Gradio interface image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil') # Ensure the image type is PIL confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") label = gr.Label(num_top_classes=2) gr.Interface( fn=predict_image, inputs=[image, confidence_slider], outputs=label, title="AI Generated Classification" ).launch()