import os import base64 import json import io import datetime from PIL import Image import logging from datasets import Dataset, load_dataset logger = logging.getLogger(__name__) HF_DATASET_NAME = "aiwithoutborders-xyz/degentic_rd0" # TODO: Replace with your actual HF username and dataset name def _pil_to_base64(image: Image.Image) -> str: """Converts a PIL Image to a base64 string.""" # Explicitly check if the input is a PIL Image if not isinstance(image, Image.Image): raise TypeError(f"Expected a PIL Image, but received type: {type(image)}") buffered = io.BytesIO() # Ensure image is in RGB mode before saving as JPEG if image.mode != 'RGB': image = image.convert('RGB') image.save(buffered, format="JPEG", quality=85) return base64.b64encode(buffered.getvalue()).decode('utf-8') def initialize_dataset(): """Initializes or loads the Hugging Face dataset.""" try: # Try to load existing dataset dataset = load_dataset(HF_DATASET_NAME, split="train") logger.info(f"Loaded existing Hugging Face dataset: {HF_DATASET_NAME}") except Exception: # If dataset does not exist, create a new one with an empty structure logger.info(f"Creating new Hugging Face dataset: {HF_DATASET_NAME}") dataset = Dataset.from_dict({ "timestamp": [], "image": [], # Storing base64 string for simplicity, or path/bytes if preferred "inference_request": [], "model_predictions": [], "ensemble_output": [], "forensic_outputs": [], # List of base64 image strings "agent_monitoring_data": [], "human_feedback": [] }) return dataset def log_inference_data( original_image: Image.Image, inference_params: dict, model_predictions: list[dict], ensemble_output: dict, forensic_images: list[Image.Image], agent_monitoring_data: dict, human_feedback: dict = None ): """Logs a single inference event to the Hugging Face dataset.""" try: dataset = initialize_dataset() # Convert PIL Images to base64 strings for storage original_image_b64 = _pil_to_base64(original_image) forensic_images_b64 = [] for img_item in forensic_images: if img_item is not None: if not isinstance(img_item, Image.Image): try: img_item = Image.fromarray(img_item) except Exception as e: logger.error(f"Error converting forensic image to PIL for base64 encoding: {e}") continue # Skip this image if conversion fails # Now img_item should be a PIL Image, safe to pass to _pil_to_base64 forensic_images_b64.append(_pil_to_base64(img_item)) new_entry = { "timestamp": datetime.datetime.now().isoformat(), "image": original_image_b64, "inference_request": inference_params, "model_predictions": model_predictions, "ensemble_output": ensemble_output, "forensic_outputs": forensic_images_b64, # List of base64 image strings "agent_monitoring_data": agent_monitoring_data, "human_feedback": human_feedback if human_feedback is not None else {} } # Append the new entry # Note: Directly appending might not be efficient for large datasets or frequent logging # For a production system, consider batched writes or more robust data pipelines. updated_dataset = dataset.add_item(new_entry) # This will push to the Hugging Face Hub if you are logged in and dataset is configured # Or save locally if not. updated_dataset.save_to_disk("sherloq-forensics/hf_dataset_cache") # Save locally for now logger.info("Inference data logged successfully to local cache.") # To push to hub, uncomment the line below and ensure HF_DATASET_NAME is set correctly and you are logged in # updated_dataset.push_to_hub(HF_DATASET_NAME, private=True) # logger.info("Inference data pushed to Hugging Face Hub.") except Exception as e: logger.error(f"Failed to log inference data to Hugging Face dataset: {e}")