import logging from PIL import Image logger = logging.getLogger(__name__) class ContextualIntelligenceAgent: def __init__(self): # In a real scenario, this would involve an LLM call or a sophisticated rule engine pass def infer_context_tags(self, image_data: dict, initial_predictions: dict) -> list[str]: """Simulates an LLM inferring context tags based on image data and predictions.""" context_tags = [] # Boilerplate logic: infer tags based on simple cues if image_data.get("width", 0) > 1000 and image_data.get("height", 0) > 1000: context_tags.append("high_resolution") # Example based on initial broad prediction (e.g., if any model strongly predicts 'real') if any(v.get("Real Score", 0) > 0.9 for v in initial_predictions.values()): context_tags.append("potentially_natural_scene") # Mock external detection (e.g., from a simpler scene classification model or EXIF data) # For demonstration, we'll hardcode some possible tags here. # In a real system, you'd feed actual image features or metadata to an LLM. mock_tags = ["outdoor", "sunny"] # These could be returned by an actual LLM based on input for tag in mock_tags: if tag not in context_tags: context_tags.append(tag) return context_tags class ForensicAnomalyDetectionAgent: def __init__(self): # In a real scenario, this would involve an LLM call to analyze textual descriptions pass def analyze_forensic_outputs(self, forensic_output_descriptions: list[str]) -> dict: """Simulates an LLM analyzing descriptions of forensic images for anomalies.""" anomalies = {"summary": "No significant anomalies detected.", "details": []} # Boilerplate logic: look for keywords in descriptions for desc in forensic_output_descriptions: if "strong edges" in desc.lower() and "ela" in desc.lower(): anomalies["summary"] = "Potential manipulation indicated by ELA." anomalies["details"].append("ELA: Unusually strong edges detected, suggesting image compositing.") if "unexpected patterns" in desc.lower() and "bit plane" in desc.lower(): anomalies["summary"] = "Anomalies detected in bit plane data." anomalies["details"].append("Bit Plane: Irregular patterns found, possibly indicating hidden data or processing.") if len(anomalies["details"]) > 0: anomalies["summary"] = "Multiple anomalies detected across forensic outputs." return anomalies