import numpy as np import io from PIL import Image from torchvision import transforms def softmax(vector): e = np.exp(vector - np.max(vector)) # for numerical stability return e / e.sum() def augment_image(img_pil): transform_flip = transforms.Compose([ transforms.RandomHorizontalFlip(p=1.0) ]) transform_rotate = transforms.Compose([ transforms.RandomRotation(degrees=(90, 90)) ]) augmented_img_flip = transform_flip(img_pil) augmented_img_rotate = transform_rotate(img_pil) return augmented_img_flip, augmented_img_rotate def convert_pil_to_bytes(image, format='JPEG'): img_byte_arr = io.BytesIO() image.save(img_byte_arr, format=format) img_byte_arr = img_byte_arr.getvalue() return img_byte_arr