import os from typing import Literal import spaces import gradio as gr import modelscope_studio.components.antd as antd import modelscope_studio.components.antdx as antdx import modelscope_studio.components.base as ms from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification from torchvision import transforms import torch from PIL import Image import numpy as np import io import logging from utils.utils import softmax, augment_image, convert_pil_to_bytes from utils.gradient import gradient_processing from utils.minmax import preprocess as minmax_preprocess from utils.ela import genELA as ELA # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Ensure using GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') header_style = { "textAlign": 'center', "color": '#fff', "height": 64, "paddingInline": 48, "lineHeight": '64px', "backgroundColor": '#4096ff', } content_style = { "textAlign": 'center', "minHeight": 120, "lineHeight": '120px', "color": '#fff', "backgroundColor": '#0958d9', } sider_style = { "textAlign": 'center', "lineHeight": '120px', "color": '#fff', "backgroundColor": '#1677ff', } footer_style = { "textAlign": 'center', "color": '#fff', "backgroundColor": '#4096ff', } layout_style = { "borderRadius": 8, "overflow": 'hidden', "width": 'calc(100% - 8px)', "maxWidth": 'calc(100% - 8px)', } # Model paths and class names MODEL_PATHS = { "model_1": "haywoodsloan/ai-image-detector-deploy", "model_2": "Heem2/AI-vs-Real-Image-Detection", "model_3": "Organika/sdxl-detector", "model_4": "cmckinle/sdxl-flux-detector", "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", "model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", "model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", "model_7": "date3k2/vit-real-fake-classification-v4" } CLASS_NAMES = { "model_1": ['artificial', 'real'], "model_2": ['AI Image', 'Real Image'], "model_3": ['AI', 'Real'], "model_4": ['AI', 'Real'], "model_5": ['Realism', 'Deepfake'], "model_5b": ['Real', 'Deepfake'], "model_6": ['ai_gen', 'human'], "model_7": ['Fake', 'Real'], } # Load models and processors def load_models(): image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]) model_1 = model_1.to(device) clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 = load_models() @spaces.GPU(duration=10) def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id, feature_extractor=None): try: if feature_extractor: inputs = feature_extractor(img_pil, return_tensors="pt").to(device) with torch.no_grad(): outputs = clf(**inputs) logits = outputs.logits probabilities = softmax(logits.cpu().numpy()[0]) result = {class_names[i]: probabilities[i] for i in range(len(class_names))} else: prediction = clf(img_pil) result = {pred['label']: pred['score'] for pred in prediction} result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)] logger.info(result_output) for class_name in class_names: if class_name not in result: result[class_name] = 0.0 if result[class_names[0]] >= confidence_threshold: label = f"AI, Confidence: {result[class_names[0]]:.4f}" result_output.append('AI') elif result[class_names[1]] >= confidence_threshold: label = f"Real, Confidence: {result[class_names[1]]:.4f}" result_output.append('REAL') else: label = "Uncertain Classification" result_output.append('UNCERTAIN') except Exception as e: label = f"Error: {str(e)}" result_output = [model_id, model_name, 0.0, 0.0, 'ERROR'] # Ensure result_output is assigned in case of error return label, result_output @spaces.GPU(duration=10) def predict_image(img, confidence_threshold): if not isinstance(img, Image.Image): raise ValueError(f"Expected a PIL Image, but got {type(img)}") if img.mode != 'RGB': img_pil = img.convert('RGB') else: img_pil = img img_pil = transforms.Resize((256, 256))(img_pil) img_pilvits = transforms.Resize((224, 224))(img_pil) label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1) label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2) label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3, feature_extractor_3) label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4, feature_extractor_4) label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5) label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6) label_6, result_6output = predict_with_model(img_pilvits, clf_6, CLASS_NAMES["model_6"], confidence_threshold, "Swin Midjourney/SDXL", 7) label_7, result_7output = predict_with_model(img_pilvits, clf_7, CLASS_NAMES["model_7"], confidence_threshold, "Vit", 7) combined_results = { "SwinV2/detect": label_1, "ViT/AI-vs-Real": label_2, "Swin/SDXL": label_3, "Swin/SDXL-FLUX": label_4, "prithivMLmods": label_5, "prithivMLmods-2-22": label_5b, "SwinMidSDXL": label_6, "Vit": label_7 } print(combined_results) combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput, result_6output, result_7output] return img_pil, combined_outputs # Define a function to generate the HTML content def generate_results_html(results): def get_header_color(label): if label == 'AI': return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200' elif label == 'REAL': return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200' elif label == 'UNCERTAIN': return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200' elif label == 'MAINTENANCE': return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200' else: return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200' def generate_tile_html(index, result, model_name, contributor, model_path): label = result[-1] header_colors = get_header_color(label) real_conf = result[2] ai_conf = result[3] return f"""
MODEL {index + 1}: {'' if label == 'REAL' else ''}

{label}

Conf: {real_conf:.4f}

Conf: {ai_conf:.4f}

{model_name}

Real: {real_conf:.4f}, AI: {ai_conf:.4f}
""" html_content = f"""
{generate_tile_html(0, results[0], "SwinV2 Based", "haywoodsloan", MODEL_PATHS["model_1"])} {generate_tile_html(1, results[1], "ViT Based", "Heem2", MODEL_PATHS["model_2"])} {generate_tile_html(2, results[2], "SDXL Dataset", "Organika", MODEL_PATHS["model_3"])} {generate_tile_html(3, results[3], "SDXL + FLUX", "cmckinle", MODEL_PATHS["model_4"])} {generate_tile_html(4, results[4], "Vit Based", "prithivMLmods", MODEL_PATHS["model_5"])} {generate_tile_html(5, results[5], "Vit Based, Newer Dataset", "prithivMLmods", MODEL_PATHS["model_5b"])} {generate_tile_html(6, results[6], "Swin, Midj + SDXL", "ideepankarsharma2003", MODEL_PATHS["model_6"])} {generate_tile_html(7, results[7], "ViT", "temp", MODEL_PATHS["model_7"])}
""" return html_content def predict_image_with_html(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength): if augment_methods: img_pil, _ = augment_image(img, augment_methods, rotate_degrees, noise_level, sharpen_strength) else: img_pil = img img_pil, results = predict_image(img_pil, confidence_threshold) img_np = np.array(img_pil) # Convert PIL Image to NumPy array gradient_image = gradient_processing(img_np) # Added gradient processing minmax_image = minmax_preprocess(img_np) # Added MinMax processing # Generate ELA images with different presets ela_img_1 = ELA(img_pil, scale=100, alpha=0.66) ela_img_2 = ELA(img_pil, scale=50, alpha=0.5) forensics_images = [img_pil, ela_img_1, ela_img_2, gradient_image, minmax_image] html_content = generate_results_html(results) return img_pil, forensics_images, html_content with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ overflow-y: hidden !important;} .ms-gr-ant-welcome-icon{ height:unset !important;} .tabs{margin-top:10px;}") as iface: with ms.Application() as app: with antd.ConfigProvider(): antdx.Welcome( icon= "https://cdn-avatars.huggingface.co/v1/production/uploads/639daf827270667011153fbc/WpeSFhuB81DY-1TjNUmV_.png", title="Welcome to Project OpenSight", description= "The OpenSight aims to be an open-source SOTA generated image detection model. This HF Space is not only an introduction but a educational playground for the public to evaluate and challenge current open source models. **Space will be upgraded shortly; inference on all 6 models should take about 1.2~ seconds.** " ) with gr.Tab("πŸ‘€ Detection Models Eval / Playground"): gr.Markdown("# Open Source Detection Models Found on the Hub\n\n - **Space will be upgraded shortly;** inference on all 6 models should take about 1.2~ seconds once we're back on CUDA.\n - The **Community Forensics** mother of all detection models is now available for inference, head to the middle tab above this.\n - Lots of exciting things coming up, stay tuned!") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil') with gr.Accordion("Settings (Optional)", open=False, elem_id="settings_accordion"): augment_checkboxgroup = gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], label="Augmentation Methods") rotate_slider = gr.Slider(0, 45, value=2, step=1, label="Rotate Degrees", visible=False) noise_slider = gr.Slider(0, 50, value=4, step=1, label="Noise Level", visible=False) sharpen_slider = gr.Slider(0, 50, value=11, step=1, label="Sharpen Strength", visible=False) confidence_slider = gr.Slider(0.0, 1.0, value=0.75, step=0.05, label="Confidence Threshold") inputs = [image_input, confidence_slider, augment_checkboxgroup, rotate_slider, noise_slider, sharpen_slider] predict_button = gr.Button("Predict") augment_button = gr.Button("Augment & Predict") image_output = gr.Image(label="Processed Image", visible=False) with gr.Column(scale=2): # Custom HTML component to display results in 5 columns results_html = gr.HTML(label="Model Predictions") forensics_gallery = gr.Gallery(label="Post Processed Images", visible=True, columns=[5], rows=[1], container=False, height="auto", object_fit="contain", elem_id="post-gallery") outputs = [image_output, forensics_gallery, results_html] # Show/hide rotate slider based on selected augmentation method augment_checkboxgroup.change(lambda methods: gr.update(visible="rotate" in methods), inputs=[augment_checkboxgroup], outputs=[rotate_slider]) augment_checkboxgroup.change(lambda methods: gr.update(visible="add_noise" in methods), inputs=[augment_checkboxgroup], outputs=[noise_slider]) augment_checkboxgroup.change(lambda methods: gr.update(visible="sharpen" in methods), inputs=[augment_checkboxgroup], outputs=[sharpen_slider]) predict_button.click( fn=predict_image_with_html, inputs=inputs, outputs=outputs ) augment_button.click( # Connect Augment button to the function fn=predict_image_with_html, inputs=[ image_input, confidence_slider, gr.CheckboxGroup(["rotate", "add_noise", "sharpen"], value=["rotate", "add_noise", "sharpen"], visible=False), # Default values rotate_slider, noise_slider, sharpen_slider ], outputs=outputs ) predict_button.click( fn=None, js="() => {document.getElementById('project_accordion').open = false;}", # Close the project accordion inputs=[], outputs=[] ) with gr.Tab("πŸ‘‘ Community Forensics Preview"): temp_space = gr.load("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview", src="spaces") # preview # no idea if this will work with gr.Tab("πŸ₯‡ Leaderboard"): gr.Markdown("# AI Generated / Deepfake Detection Models Leaderboard: Soonβ„’") # Launch the interface iface.launch()