import os from typing import Literal import spaces import gradio as gr import modelscope_studio.components.antd as antd import modelscope_studio.components.antdx as antdx import modelscope_studio.components.base as ms from transformers import pipeline, AutoImageProcessor, SwinForImageClassification, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification from torchvision import transforms import torch from PIL import Image import numpy as np import io import logging from utils.utils import softmax, augment_image, convert_pil_to_bytes from utils.gradient import gradient_processing from utils.minmax import preprocess as minmax_preprocess from utils.ela import genELA as ELA # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Ensure using GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') header_style = { "textAlign": 'center', "color": '#fff', "height": 64, "paddingInline": 48, "lineHeight": '64px', "backgroundColor": '#4096ff', } content_style = { "textAlign": 'center', "minHeight": 120, "lineHeight": '120px', "color": '#fff', "backgroundColor": '#0958d9', } sider_style = { "textAlign": 'center', "lineHeight": '120px', "color": '#fff', "backgroundColor": '#1677ff', } footer_style = { "textAlign": 'center', "color": '#fff', "backgroundColor": '#4096ff', } layout_style = { "borderRadius": 8, "overflow": 'hidden', "width": 'calc(100% - 8px)', "maxWidth": 'calc(100% - 8px)', } # Model paths and class names MODEL_PATHS = { "model_1": "haywoodsloan/ai-image-detector-deploy", "model_2": "Heem2/AI-vs-Real-Image-Detection", "model_3": "Organika/sdxl-detector", "model_4": "cmckinle/sdxl-flux-detector", "model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model", "model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22", "model_6": "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL", "model_7": "date3k2/vit-real-fake-classification-v4" } CLASS_NAMES = { "model_1": ['artificial', 'real'], "model_2": ['AI Image', 'Real Image'], "model_3": ['AI', 'Real'], "model_4": ['AI', 'Real'], "model_5": ['Realism', 'Deepfake'], "model_5b": ['Real', 'Deepfake'], "model_6": ['ai_gen', 'human'], "model_7": ['Fake', 'Real'], } # Load models and processors def load_models(): image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True) model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"]) model_1 = model_1.to(device) clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device) feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device) model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device) feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device) model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device) clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device) clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device) image_processor_6 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_6"], use_fast=True) model_6 = SwinForImageClassification.from_pretrained(MODEL_PATHS["model_6"]).to(device) clf_6 = pipeline(model=model_6, task="image-classification", image_processor=image_processor_6, device=device) image_processor_7 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_7"], use_fast=True) model_7 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_7"]).to(device) clf_7 = pipeline(model=model_7, task="image-classification", image_processor=image_processor_7, device=device) return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b, clf_6, model_7, clf_7 = load_models() @spaces.GPU(duration=10) def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id, feature_extractor=None): try: if feature_extractor: inputs = feature_extractor(img_pil, return_tensors="pt").to(device) with torch.no_grad(): outputs = clf(**inputs) logits = outputs.logits probabilities = softmax(logits.cpu().numpy()[0]) result = {class_names[i]: probabilities[i] for i in range(len(class_names))} else: prediction = clf(img_pil) result = {pred['label']: pred['score'] for pred in prediction} result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)] logger.info(result_output) for class_name in class_names: if class_name not in result: result[class_name] = 0.0 if result[class_names[0]] >= confidence_threshold: label = f"AI, Confidence: {result[class_names[0]]:.4f}" result_output.append('AI') elif result[class_names[1]] >= confidence_threshold: label = f"Real, Confidence: {result[class_names[1]]:.4f}" result_output.append('REAL') else: label = "Uncertain Classification" result_output.append('UNCERTAIN') except Exception as e: label = f"Error: {str(e)}" result_output = [model_id, model_name, 0.0, 0.0, 'ERROR'] # Ensure result_output is assigned in case of error return label, result_output @spaces.GPU(duration=10) def predict_image(img, confidence_threshold): if not isinstance(img, Image.Image): raise ValueError(f"Expected a PIL Image, but got {type(img)}") if img.mode != 'RGB': img_pil = img.convert('RGB') else: img_pil = img img_pil = transforms.Resize((256, 256))(img_pil) img_pilvits = transforms.Resize((224, 224))(img_pil) label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1) label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2) label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3, feature_extractor_3) label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4, feature_extractor_4) label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5) label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6) label_6, result_6output = predict_with_model(img_pilvits, clf_6, CLASS_NAMES["model_6"], confidence_threshold, "Swin Midjourney/SDXL", 7) label_7, result_7output = predict_with_model(img_pilvits, clf_7, CLASS_NAMES["model_7"], confidence_threshold, "Vit", 7) combined_results = { "SwinV2/detect": label_1, "ViT/AI-vs-Real": label_2, "Swin/SDXL": label_3, "Swin/SDXL-FLUX": label_4, "prithivMLmods": label_5, "prithivMLmods-2-22": label_5b, "SwinMidSDXL": label_6, "Vit": label_7 } print(combined_results) combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput, result_6output, result_7output] return img_pil, combined_outputs # Define a function to generate the HTML content def generate_results_html(results): def get_header_color(label): if label == 'AI': return 'bg-red-500 text-red-700', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200' elif label == 'REAL': return 'bg-green-500 text-green-700', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200' elif label == 'UNCERTAIN': return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200' elif label == 'MAINTENANCE': return 'bg-blue-500 text-blue-700', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200' else: return 'bg-gray-300 text-gray-700', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200' def generate_tile_html(index, result, model_name, contributor, model_path): label = result[-1] header_colors = get_header_color(label) real_conf = result[2] ai_conf = result[3] return f"""
{label}
Conf: {real_conf:.4f}
Conf: {ai_conf:.4f}