Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
import spaces | |
# 言語リスト | |
languages = [ | |
"English", "Chinese (Simplified)", "Chinese (Traditional)", "Spanish", "Arabic", "Hindi", | |
"Bengali", "Portuguese", "Russian", "Japanese", "German", "French", "Urdu", "Indonesian", | |
"Italian", "Turkish", "Korean", "Vietnamese", "Tamil", "Marathi", "Telugu", "Persian", | |
"Polish", "Dutch", "Thai", "Gujarati", "Romanian", "Ukrainian", "Malay", "Kannada", "Oriya (Odia)", | |
"Burmese (Myanmar)", "Azerbaijani", "Uzbek", "Kurdish (Kurmanji)", "Swedish", "Filipino (Tagalog)", | |
"Serbian", "Czech", "Hungarian", "Greek", "Belarusian", "Bulgarian", "Hebrew", "Finnish", | |
"Slovak", "Norwegian", "Danish", "Sinhala", "Croatian", "Lithuanian", "Slovenian", "Latvian", | |
"Estonian", "Armenian", "Malayalam", "Georgian", "Mongolian", "Afrikaans", "Nepali", "Pashto", | |
"Punjabi", "Kurdish", "Kyrgyz", "Somali", "Albanian", "Icelandic", "Basque", "Luxembourgish", | |
"Macedonian", "Maltese", "Hawaiian", "Yoruba", "Maori", "Zulu", "Welsh", "Swahili", "Haitian Creole", | |
"Lao", "Amharic", "Khmer", "Javanese", "Kazakh", "Malagasy", "Sindhi", "Sundanese", "Tajik", "Xhosa", | |
"Yiddish", "Bosnian", "Cebuano", "Chichewa", "Corsican", "Esperanto", "Frisian", "Galician", "Hausa", | |
"Hmong", "Igbo", "Irish", "Kinyarwanda", "Latin", "Samoan", "Scots Gaelic", "Sesotho", "Shona", | |
"Sotho", "Swedish", "Uyghur" | |
] | |
tokenizer = AutoTokenizer.from_pretrained("aixsatoshi/Honyaku-13b") | |
model = AutoModelForCausalLM.from_pretrained("aixsatoshi/Honyaku-13b", torch_dtype=torch.float16) | |
#model = model.to('cuda:0') | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [2] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history, tokens, temperature, language): | |
tag = "<" + language.lower() + ">" | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["\n<english>:"+item[0]+"</english>\n", tag+item[1]]) | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=int(tokens), | |
temperature=float(temperature), | |
do_sample=True, | |
top_p=0.95, | |
top_k=20, | |
repetition_penalty=1.15, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
# Gradioインタフェースの設定 | |
demo = gr.ChatInterface( | |
fn=predict, | |
title="Honyaku-13b webui", | |
description="Translate using Honyaku-7b model", | |
additional_inputs=[ | |
gr.Slider(100, 4096, value=1000, label="Tokens"), | |
gr.Slider(0.0, 1.0, value=0.3, label="Temperature"), | |
gr.Dropdown(choices=languages, value="Japanese", label="Language") | |
] | |
) | |
demo.queue().launch() | |