File size: 4,706 Bytes
4b1a870
 
 
 
 
 
 
 
 
 
 
571bf3a
4b1a870
571bf3a
 
 
4b1a870
 
5077254
0dfa748
 
571bf3a
5077254
 
571bf3a
4b1a870
 
246cb3f
 
 
 
 
 
 
 
 
4b1a870
246cb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571bf3a
 
 
246cb3f
 
 
 
 
 
074cb75
246cb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571bf3a
 
 
074cb75
571bf3a
 
074cb75
571bf3a
 
 
246cb3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1a870
 
246cb3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

# モデルのダウンロード
hf_hub_download(
   repo_id="bartowski/gemma-2-9b-it-GGUF",
   filename="gemma-2-9b-it-Q5_K_M.gguf",
   local_dir="./models"
)

hf_hub_download(
   repo_id="bartowski/Gemma-2-9B-It-SPPO-Iter3-GGUF",
   filename="Gemma-2-9B-It-SPPO-Iter3-Q5_K_M.gguf",
   local_dir="./models"
)

# 推論関数
@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=8192,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)

    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )

    outputs = ""
    for output in stream:
        outputs += output
        yield [(message, outputs)]

# Gradioのインターフェースを作成
def create_interface(model_name, description):
    return gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value=model_name, label="Model", interactive=False),
            gr.Textbox(value="You are a helpful assistant.", label="System message"),
            gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p",
            ),
            gr.Slider(
                minimum=0,
                maximum=100,
                value=40,
                step=1,
                label="Top-k",
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                value=1.1,
                step=0.1,
                label="Repetition penalty",
            ),
        ],
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn=None,  # Remove the individual submit button
        title=f"Chat with Gemma 2 using llama.cpp - {model_name}",
        description=description,
        chatbot=gr.Chatbot(
            scale=1,
            likeable=False,
            show_copy_button=True
        )
    )

# 各モデルのインターフェース
description_9b = """<p align="center">Gemma-2 9B it Model</p>"""
description_27b = """<p align="center">Gemma-2-9B-It-SPPO-Iter3 Model</p>"""

interface_9b = create_interface('gemma-2-9b-it-Q5_K_M.gguf', description_9b)
interface_27b = create_interface('Gemma-2-9B-It-SPPO-Iter3-Q5_K_M.gguf', description_9bSPPO)

# Gradio Blocksで2つのインターフェースを並べて表示
with gr.Blocks() as demo:
    #gr.Markdown("# Compare Gemma-2 9B and 27B Models")
    with gr.Row():
        with gr.Column():
            input_field = gr.Textbox(label="Input", interactive=True)
        with gr.Column():
            interface_9b.render()
        with gr.Column():
            interface_27b.render()

    submit_btn = gr.Button("Send")

    def send_to_both(input_text):
        return input_text, input_text

    submit_btn.click(
        fn=send_to_both,
        inputs=input_field,
        outputs=[interface_9b.chatbot, interface_27b.chatbot]
    )

if __name__ == "__main__":
    demo.launch(share=True)