Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,428 Bytes
4b1a870 ad15fea 4b1a870 571bf3a 4b1a870 9e85760 4b1a870 5077254 9e85760 5077254 9e85760 c2a4e8b 9e85760 0699d9c 9838fcd a4a5e65 f51457e ab2c4ae f51457e 9e85760 a4a5e65 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e 9e85760 f51457e a4a5e65 9e85760 cbc7628 9e85760 cbc7628 9e85760 dff70a0 ad15fea dff70a0 879bccf dff70a0 cfa5ed1 879bccf c0010d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
import random
from datasets import load_dataset
from huggingface_hub import hf_hub_download
# モデルのダウンロード
hf_hub_download(
repo_id="Aratako/Oumuamua-7b-RP-GGUF",
filename="Oumuamua-7b-RP_Q4_K_M.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Oumuamua-7b-instruct-v2-GGUF",
filename="Oumuamua-7b-instruct-v2-Q4_K_M.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="mmnga/umiyuki-Umievo-itr012-Gleipnir-7B-gguf",
filename="umiyuki-Umievo-itr012-Gleipnir-7B-Q4_K_M.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="Local-Novel-LLM-project/Ninja-V3-GGUF",
filename="Ninja-V3-Q4_K_M.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="Local-Novel-LLM-project/Kagemusya-7B-v1-GGUF",
filename="kagemusya-7b-v1Q8_0.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="elyza/Llama-3-ELYZA-JP-8B-GGUF",
filename="Llama-3-ELYZA-JP-8B-q4_k_m.gguf",
local_dir="./models"
)
llm = None
llm_model = None
# データセットをロードしてスプリットを確認
dataset = load_dataset("elyza/ELYZA-tasks-100")
print(dataset)
# 使用するスプリット名を確認
split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック
# 適切なスプリットから10個の例を取得
examples_list = list(dataset[split_name]) # スプリットをリストに変換
examples = random.sample(examples_list, 10) # リストからランダムに10個選択
example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
template,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType[template]
global llm
global llm_model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
description = """<p align="center">★画面下のAdditional Inputから、使用したいモデルと、チャットテンプレートを選択してください。★</p>
<p><center>
<a href="https://huggingface.co/Aratako/Oumuamua-7b-RP-GGUF" target="_blank">[Oumuamua-7b-RP Model]</a><br>
<a href="https://huggingface.co/bartowski/Oumuamua-7b-instruct-v2-GGUF" target="_blank">[Oumuamua-7b-instruct-v2 Model]</a><br>
<a href="https://huggingface.co/mmnga/umiyuki-Umievo-itr012-Gleipnir-7B-gguf" target="_blank">[Umievo-itr012-Gleipnir-7B Model]</a><br>
<a href="https://huggingface.co/Local-Novel-LLM-project/Ninja-V3-GGUF" target="_blank">[Ninja-V3 Model]</a><br>
<a href="https://huggingface.co/Local-Novel-LLM-project/Kagemusya-7B-v1-GGUF" target="_blank">[Kagemusya-7B-v1 Model]</a><br>
<a href="https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B-GGUF" target="_blank">[Llama-3-ELYZA-JP-8B Model]</a>
</center></p>
"""
templates = [
"MISTRAL", "CHATML", "VICUNA", "LLAMA_2", "SYNTHIA",
"NEURAL_CHAT", "SOLAR", "OPEN_CHAT", "ALPACA", "CODE_DS",
"B22", "LLAMA_3", "PHI_3"
]
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'Oumuamua-7b-RP_Q4_K_M.gguf',
'Oumuamua-7b-instruct-v2-Q4_K_M.gguf',
'umiyuki-Umievo-itr012-Gleipnir-7B-Q4_K_M.gguf',
'Ninja-V3-Q4_K_M.gguf',
'kagemusya-7b-v1Q8_0.gguf',
'Llama-3-ELYZA-JP-8B-q4_k_m.gguf'
],
value="Oumuamua-7b-RP_Q4_K_M.gguf",
label="Model"
),
gr.Dropdown(
choices=templates,
value="LLAMA_2",
label="Template"
),
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
examples=example_inputs,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with various models using llama.cpp",
description=description,
chatbot=gr.Chatbot(
scale=1,
likeable=False,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()
|