import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr import random from datasets import load_dataset from huggingface_hub import hf_hub_download # モデルのダウンロード hf_hub_download( repo_id="team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-GGUF", filename="Tanuki-8x8B-dpo-v1.0-IQ4_NL.gguf", local_dir="./models" ) hf_hub_download( repo_id="team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-GGUF", filename="Tanuki-8x8B-dpo-v1.0-Q6_K.gguf", local_dir="./models" ) hf_hub_download( repo_id="team-hatakeyama-phase2/Tanuki-8x8B-dpo-v1.0-GGUF", filename="Tanuki-8x8B-dpo-v1.0-IQ3_M.gguf", local_dir="./models" ) llm = None llm_model = None # データセットをロードしてスプリットを確認 dataset = load_dataset("elyza/ELYZA-tasks-100") print(dataset) # 使用するスプリット名を確認 split_name = "train" if "train" in dataset else "test" # デフォルトをtrainにし、なければtestにフォールバック # 適切なスプリットから10個の例を取得 examples_list = list(dataset[split_name]) # スプリットをリストに変換 examples = random.sample(examples_list, 10) # リストからランダムに10個選択 example_inputs = [[example['input']] for example in examples] # ネストされたリストに変換 @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model, template, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): chat_template = MessagesFormatterType[template] global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs description = """
★画面下のAdditional Inputから、使用したいモデルと、チャットテンプレートを選択してください。★
★使用時の注意:現在GGUF版は著明な性能低下が確認されていますので、本来の性能が発揮されていません。本来の性能は公式推奨の推論方法ご利用ください★