Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
"Single Thread"
|
2 |
-
|
3 |
import os
|
4 |
import multiprocessing
|
5 |
import concurrent.futures
|
@@ -20,7 +18,7 @@ class DocumentRetrievalAndGeneration:
|
|
20 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
21 |
self.all_splits = self.load_documents(data_folder)
|
22 |
self.embeddings = SentenceTransformer(embedding_model_name)
|
23 |
-
self.
|
24 |
self.llm = self.initialize_llm(lm_model_id)
|
25 |
|
26 |
def load_documents(self, folder_path):
|
@@ -30,8 +28,6 @@ class DocumentRetrievalAndGeneration:
|
|
30 |
all_splits = text_splitter.split_documents(documents)
|
31 |
print('Length of documents:', len(documents))
|
32 |
print("LEN of all_splits", len(all_splits))
|
33 |
-
# for i in range(5):
|
34 |
-
# print(all_splits[i].page_content)
|
35 |
return all_splits
|
36 |
|
37 |
def create_faiss_index(self):
|
@@ -39,9 +35,7 @@ class DocumentRetrievalAndGeneration:
|
|
39 |
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
|
40 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
41 |
index.add(embeddings)
|
42 |
-
|
43 |
-
gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
|
44 |
-
return gpu_index
|
45 |
|
46 |
def initialize_llm(self, model_id):
|
47 |
bnb_config = BitsAndBytesConfig(
|
@@ -75,7 +69,7 @@ class DocumentRetrievalAndGeneration:
|
|
75 |
|
76 |
def query_and_generate_response(self, query):
|
77 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
78 |
-
distances, indices = self.
|
79 |
|
80 |
content = ""
|
81 |
for idx in indices[0]:
|
@@ -113,20 +107,15 @@ class DocumentRetrievalAndGeneration:
|
|
113 |
Solution:"NO SOLUTION AVAILABLE"
|
114 |
</s>
|
115 |
"""
|
116 |
-
# prompt = f"Query: {query}\nSolution: {content}\n"
|
117 |
|
118 |
-
# Encode and prepare inputs
|
119 |
messages = [{"role": "user", "content": prompt}]
|
120 |
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
121 |
model_inputs = encodeds.to(self.llm.device)
|
122 |
|
123 |
-
# Perform inference and measure time
|
124 |
start_time = datetime.now()
|
125 |
generated_ids = self.generate_response_with_timeout(model_inputs)
|
126 |
-
# generated_ids = self.llm.model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
127 |
elapsed_time = datetime.now() - start_time
|
128 |
|
129 |
-
# Decode and return output
|
130 |
decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
131 |
generated_response = decoded[0]
|
132 |
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
|
@@ -134,13 +123,10 @@ class DocumentRetrievalAndGeneration:
|
|
134 |
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
|
135 |
if match1:
|
136 |
solution_text = match1.group(1).strip()
|
137 |
-
print(solution_text)
|
138 |
if "Solution:" in solution_text:
|
139 |
solution_text = solution_text.split("Solution:", 1)[1].strip()
|
140 |
elif match2:
|
141 |
solution_text = match2.group(1).strip()
|
142 |
-
print(solution_text)
|
143 |
-
|
144 |
else:
|
145 |
solution_text=generated_response
|
146 |
print("Generated response:", generated_response)
|
@@ -154,77 +140,12 @@ class DocumentRetrievalAndGeneration:
|
|
154 |
return response
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
# Example usage
|
158 |
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
|
159 |
lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
160 |
data_folder = 'text_files'
|
161 |
|
162 |
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
|
163 |
|
164 |
-
# """Dual Interface"""
|
165 |
-
|
166 |
-
# def launch_interface():
|
167 |
-
# css_code = """
|
168 |
-
# .gradio-container {
|
169 |
-
# background-color: #daccdb;
|
170 |
-
# }
|
171 |
-
# /* Button styling for all buttons */
|
172 |
-
# button {
|
173 |
-
# background-color: #927fc7; /* Default color for all other buttons */
|
174 |
-
# color: black;
|
175 |
-
# border: 1px solid black;
|
176 |
-
# padding: 10px;
|
177 |
-
# margin-right: 10px;
|
178 |
-
# font-size: 16px; /* Increase font size */
|
179 |
-
# font-weight: bold; /* Make text bold */
|
180 |
-
# }
|
181 |
-
# """
|
182 |
-
# EXAMPLES = [
|
183 |
-
# "On which devices can the VIP and CSI2 modules operate simultaneously?",
|
184 |
-
# "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
185 |
-
# "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
|
186 |
-
# ]
|
187 |
-
|
188 |
-
# file_path = "ticketNames.txt"
|
189 |
-
|
190 |
-
# # Read the file content
|
191 |
-
# with open(file_path, "r") as file:
|
192 |
-
# content = file.read()
|
193 |
-
# ticket_names = json.loads(content)
|
194 |
-
# dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
195 |
-
|
196 |
-
# # Define Gradio interfaces
|
197 |
-
# tab1 = gr.Interface(
|
198 |
-
# fn=doc_retrieval_gen.qa_infer_gradio,
|
199 |
-
# inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
200 |
-
# allow_flagging='never',
|
201 |
-
# examples=EXAMPLES,
|
202 |
-
# cache_examples=False,
|
203 |
-
# outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
|
204 |
-
# css=css_code
|
205 |
-
# )
|
206 |
-
# tab2 = gr.Interface(
|
207 |
-
# fn=doc_retrieval_gen.qa_infer_gradio,
|
208 |
-
# inputs=[dropdown],
|
209 |
-
# allow_flagging='never',
|
210 |
-
# outputs=[gr.Textbox(label="SOLUTION"), gr.Textbox(label="RELATED QUERIES")],
|
211 |
-
# css=css_code
|
212 |
-
# )
|
213 |
-
|
214 |
-
# # Combine interfaces into a tabbed interface
|
215 |
-
# gr.TabbedInterface(
|
216 |
-
# [tab1, tab2],
|
217 |
-
# ["Textbox Input", "FAQs"],
|
218 |
-
# title="TI E2E FORUM",
|
219 |
-
# css=css_code
|
220 |
-
# ).launch(debug=True)
|
221 |
-
|
222 |
-
# # Launch the interface
|
223 |
-
# launch_interface()
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
"""Single Interface"""
|
228 |
def launch_interface():
|
229 |
css_code = """
|
230 |
.gradio-container {
|
@@ -245,15 +166,6 @@ if __name__ == "__main__":
|
|
245 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
246 |
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"]
|
247 |
|
248 |
-
# file_path = "ticketNames.txt"
|
249 |
-
|
250 |
-
# # Read the file content
|
251 |
-
# with open(file_path, "r") as file:
|
252 |
-
# content = file.read()
|
253 |
-
# ticket_names = json.loads(content)
|
254 |
-
# dropdown = gr.Dropdown(label="Sample queries", choices=ticket_names)
|
255 |
-
|
256 |
-
# Define Gradio interface
|
257 |
interface = gr.Interface(
|
258 |
fn=doc_retrieval_gen.qa_infer_gradio,
|
259 |
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
@@ -264,8 +176,6 @@ if __name__ == "__main__":
|
|
264 |
css=css_code
|
265 |
)
|
266 |
|
267 |
-
# Launch Gradio interface
|
268 |
interface.launch(debug=True)
|
269 |
|
270 |
-
# Launch the interface
|
271 |
launch_interface()
|
|
|
|
|
|
|
1 |
import os
|
2 |
import multiprocessing
|
3 |
import concurrent.futures
|
|
|
18 |
def __init__(self, embedding_model_name, lm_model_id, data_folder):
|
19 |
self.all_splits = self.load_documents(data_folder)
|
20 |
self.embeddings = SentenceTransformer(embedding_model_name)
|
21 |
+
self.cpu_index = self.create_faiss_index()
|
22 |
self.llm = self.initialize_llm(lm_model_id)
|
23 |
|
24 |
def load_documents(self, folder_path):
|
|
|
28 |
all_splits = text_splitter.split_documents(documents)
|
29 |
print('Length of documents:', len(documents))
|
30 |
print("LEN of all_splits", len(all_splits))
|
|
|
|
|
31 |
return all_splits
|
32 |
|
33 |
def create_faiss_index(self):
|
|
|
35 |
embeddings = self.embeddings.encode(all_texts, convert_to_tensor=True).cpu().numpy()
|
36 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
37 |
index.add(embeddings)
|
38 |
+
return index
|
|
|
|
|
39 |
|
40 |
def initialize_llm(self, model_id):
|
41 |
bnb_config = BitsAndBytesConfig(
|
|
|
69 |
|
70 |
def query_and_generate_response(self, query):
|
71 |
query_embedding = self.embeddings.encode(query, convert_to_tensor=True).cpu().numpy()
|
72 |
+
distances, indices = self.cpu_index.search(np.array([query_embedding]), k=5)
|
73 |
|
74 |
content = ""
|
75 |
for idx in indices[0]:
|
|
|
107 |
Solution:"NO SOLUTION AVAILABLE"
|
108 |
</s>
|
109 |
"""
|
|
|
110 |
|
|
|
111 |
messages = [{"role": "user", "content": prompt}]
|
112 |
encodeds = self.llm.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
113 |
model_inputs = encodeds.to(self.llm.device)
|
114 |
|
|
|
115 |
start_time = datetime.now()
|
116 |
generated_ids = self.generate_response_with_timeout(model_inputs)
|
|
|
117 |
elapsed_time = datetime.now() - start_time
|
118 |
|
|
|
119 |
decoded = self.llm.tokenizer.batch_decode(generated_ids)
|
120 |
generated_response = decoded[0]
|
121 |
match1 = re.search(r'\[/INST\](.*?)</s>', generated_response, re.DOTALL)
|
|
|
123 |
match2 = re.search(r'Solution:(.*?)</s>', generated_response, re.DOTALL | re.IGNORECASE)
|
124 |
if match1:
|
125 |
solution_text = match1.group(1).strip()
|
|
|
126 |
if "Solution:" in solution_text:
|
127 |
solution_text = solution_text.split("Solution:", 1)[1].strip()
|
128 |
elif match2:
|
129 |
solution_text = match2.group(1).strip()
|
|
|
|
|
130 |
else:
|
131 |
solution_text=generated_response
|
132 |
print("Generated response:", generated_response)
|
|
|
140 |
return response
|
141 |
|
142 |
if __name__ == "__main__":
|
|
|
143 |
embedding_model_name = 'flax-sentence-embeddings/all_datasets_v3_MiniLM-L12'
|
144 |
lm_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
145 |
data_folder = 'text_files'
|
146 |
|
147 |
doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def launch_interface():
|
150 |
css_code = """
|
151 |
.gradio-container {
|
|
|
166 |
"I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
|
167 |
"Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"]
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
interface = gr.Interface(
|
170 |
fn=doc_retrieval_gen.qa_infer_gradio,
|
171 |
inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
|
|
|
176 |
css=css_code
|
177 |
)
|
178 |
|
|
|
179 |
interface.launch(debug=True)
|
180 |
|
|
|
181 |
launch_interface()
|