File size: 9,535 Bytes
6c63a2d
b867be1
217c4d4
 
eb1a863
 
b8ee0a2
eb1a863
 
6c63a2d
ddaff53
eb1a863
 
 
 
 
593a8e7
eb1a863
ddaff53
b867be1
 
97629be
ddaff53
68e1082
 
 
 
 
 
 
 
 
 
 
1898f4f
c5183c8
68e1082
 
 
 
 
 
8a142a6
 
fd247b7
 
8a142a6
ddaff53
 
eb1a863
b867be1
 
 
 
 
 
 
8a142a6
eb1a863
97629be
8a142a6
 
97629be
8a142a6
b867be1
8a142a6
ddaff53
eb1a863
798ebc4
 
 
eb1a863
798ebc4
8a142a6
798ebc4
 
 
eb1a863
798ebc4
 
eb1a863
 
798ebc4
eb1a863
798ebc4
8a142a6
798ebc4
 
 
eb1a863
8a142a6
eb1a863
bb6bbaf
97629be
 
eb1a863
bb6bbaf
97629be
 
eb1a863
bb6bbaf
8a142a6
ddaff53
eb1a863
b8ee0a2
97629be
ddaff53
97629be
b867be1
ddaff53
 
6b26b26
fd247b7
 
eb1a863
fd247b7
 
 
eb1a863
 
 
 
fd247b7
ddaff53
1db9e92
fd247b7
 
 
eb1a863
 
fd247b7
eb1a863
 
 
 
 
 
 
1db9e92
 
eb1a863
 
1db9e92
6b26b26
b8ee0a2
 
6b26b26
eb1a863
 
bb6bbaf
593a8e7
 
 
 
 
116a714
 
 
 
 
 
 
 
 
593a8e7
eb1a863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b26b26
1db9e92
bb6bbaf
 
eb1a863
 
 
 
 
217c4d4
eb1a863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062515
eb1a863
2062515
eb1a863
 
 
 
 
 
2062515
b867be1
eb1a863
 
 
 
116a714
 
 
 
 
 
 
 
 
 
 
 
 
 
eb1a863
1898f4f
 
2062515
1898f4f
 
eb1a863
1898f4f
97629be
eb1a863
 
 
217c4d4
eb1a863
 
6b26b26
bb6bbaf
 
1db9e92
97629be
eb1a863
97629be
6b26b26
1db9e92
97629be
1db9e92
97629be
 
c1f1ebf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
# Keep Dynamo error suppression
import torch._dynamo
torch._dynamo.config.suppress_errors = True

os.environ["MKL_THREADING_LAYER"] = "GNU"
import spaces
from peft import PeftModel
import traceback

import torch
from transformers import (
    pipeline,
    AutoTokenizer,
    AutoModelForCausalLM,
    StoppingCriteria,
    BitNetForCausalLM
)
from .prompts import format_rag_prompt
# Remove interrupt import
# from .shared import generation_interrupt

models = {
    "Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
    "Qwen2.5-3b-Instruct": "qwen/qwen2.5-3b-instruct",
    "Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
    "Llama-3.2-3b-Instruct": "meta-llama/llama-3.2-3b-instruct",
    "Gemma-3-1b-it": "google/gemma-3-1b-it",
    "Gemma-3-4b-it": "google/gemma-3-4b-it",
    "Gemma-2-2b-it": "google/gemma-2-2b-it",
    "Phi-4-mini-instruct": "microsoft/phi-4-mini-instruct",
    "Cogito-v1-preview-llama-3b": "deepcogito/cogito-v1-preview-llama-3b",
    "IBM Granite-3.3-2b-instruct": "ibm-granite/granite-3.3-2b-instruct",
    # "Bitnet-b1.58-2B4T": "microsoft/bitnet-b1.58-2B-4T",
    # #"MiniCPM3-RAG-LoRA": "openbmb/MiniCPM3-RAG-LoRA",
    "Qwen3-0.6b": "qwen/qwen3-0.6b",
    "Qwen3-1.7b": "qwen/qwen3-1.7b",
    "Qwen3-4b": "qwen/qwen3-4b",
    "SmolLM2-1.7b-Instruct": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
    "EXAONE-3.5-2.4B-instruct": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
    "OLMo-2-1B-Instruct": "allenai/OLMo-2-0425-1B-Instruct",
    "icecream-3b": "aizip-dev/icecream-3b",
}

tokenizer_cache = {}

# List of model names for easy access
model_names = list(models.keys())


# Remove interrupt criteria class since we're not using it
# class InterruptCriteria(StoppingCriteria):
#     def __init__(self, interrupt_event):
#         self.interrupt_event = interrupt_event
# 
#     def __call__(self, input_ids, scores, **kwargs):
#         return self.interrupt_event.is_set()


@spaces.GPU
def generate_summaries(example, model_a_name, model_b_name):
    """
    Generates summaries for the given example using the assigned models sequentially.
    """
    # Remove interrupt checks
    context_text = ""
    context_parts = []

    if "full_contexts" in example and example["full_contexts"]:
        for i, ctx in enumerate(example["full_contexts"]):
            content = ""

            # Extract content from either dict or string
            if isinstance(ctx, dict) and "content" in ctx:
                content = ctx["content"]
            elif isinstance(ctx, str):
                content = ctx

            # Add document number if not already present
            if not content.strip().startswith("Document"):
                content = f"Document {i + 1}:\n{content}"

            context_parts.append(content)

        context_text = "\n\n".join(context_parts)
    else:
        # Provide a graceful fallback instead of raising an error
        print("Warning: No full context found in the example, using empty context")
        context_text = ""

    question = example.get("question", "")

    print(f"Starting inference for Model A: {model_a_name}")
    # Run model A
    summary_a = run_inference(models[model_a_name], context_text, question)

    print(f"Starting inference for Model B: {model_b_name}")
    # Run model B
    summary_b = run_inference(models[model_b_name], context_text, question)

    print("Both models completed successfully")
    return summary_a, summary_b


@spaces.GPU
def run_inference(model_name, context, question):
    """
    Run inference using the specified model.
    Returns the generated text.
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    result = ""
    tokenizer_kwargs = {
        "add_generation_prompt": True,
    }  # make sure qwen3 doesn't use thinking
    generation_kwargs = {
        "max_new_tokens": 512,
    }
    if "qwen3" in model_name.lower():
        print(
            f"Recognized {model_name} as a Qwen3 model. Setting enable_thinking=False."
        )
        tokenizer_kwargs["enable_thinking"] = False

    try:
        if model_name in tokenizer_cache:
            tokenizer = tokenizer_cache[model_name]
        else:
            # Common arguments for tokenizer loading
            tokenizer_load_args = {"padding_side": "left", "token": True}
            
            actual_model_name_for_tokenizer = model_name
            if "icecream" in model_name.lower():
                actual_model_name_for_tokenizer = "meta-llama/llama-3.2-3b-instruct"
            
            tokenizer = AutoTokenizer.from_pretrained(actual_model_name_for_tokenizer, **tokenizer_load_args)
            tokenizer_cache[model_name] = tokenizer

        accepts_sys = (
            "System role not supported" not in tokenizer.chat_template
            if tokenizer.chat_template
            else False  # Handle missing chat_template
        )

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        print("REACHED HERE BEFORE pipe")
        print(f"Loading model {model_name}...")
            
        if "bitnet" in model_name.lower():
            bitnet_model = BitNetForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.bfloat16,
            )
            pipe = pipeline(
                "text-generation",
                model=bitnet_model,
                tokenizer=tokenizer,
                torch_dtype=torch.bfloat16,
                model_kwargs={
                    "attn_implementation": "eager",
                },
            )
        elif "icecream" not in model_name.lower():
            pipe = pipeline(
                "text-generation",
                model=model_name,
                tokenizer=tokenizer,
                device_map="cuda",
                trust_remote_code=True,
                torch_dtype=torch.bfloat16,
                model_kwargs={
                    "attn_implementation": "eager",
                },
            )
        else:
            base_model = AutoModelForCausalLM.from_pretrained(
                "meta-llama/llama-3.2-3b-instruct",
                device_map="cuda",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
            )
            model = PeftModel.from_pretrained(
                base_model,
                "aizip-dev/icecream-3b",
                device_map="cuda",
                torch_dtype=torch.bfloat16,
            )

        text_input = format_rag_prompt(question, context, accepts_sys)
        
        print(f"Starting generation for {model_name}")
        if "Gemma-3".lower() in model_name.lower():
            print("REACHED HERE BEFORE GEN")
            result = pipe(
                text_input,
                max_new_tokens=512,
                generation_kwargs={"skip_special_tokens": True}
            )[0]["generated_text"]

            result = result[-1]["content"]
        elif "icecream" in model_name.lower():
            
            print("ICECREAM")
            model_inputs = tokenizer.apply_chat_template(
                text_input,
                tokenize=True,
                return_tensors="pt",
                return_dict=True,
                **tokenizer_kwargs, 
            )

            model_inputs = model_inputs.to(model.device)

            input_ids = model_inputs.input_ids
            attention_mask = model_inputs.attention_mask 

            prompt_tokens_length = input_ids.shape[1] 

            with torch.inference_mode():
                output_sequences = model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=512,
                    eos_token_id=tokenizer.eos_token_id, 
                    pad_token_id=tokenizer.pad_token_id
                )
            
            generated_token_ids = output_sequences[0][prompt_tokens_length:]
            result = tokenizer.decode(generated_token_ids, skip_special_tokens=True)
        # elif "bitnet" in model_name.lower():
        #     formatted = tokenizer.apply_chat_template(
        #         text_input,
        #         tokenize=True,
        #         return_tensors="pt",
        #         return_dict=True,
        #         **tokenizer_kwargs,
        #     ).to(bitnet_model.device)
        #     with torch.inference_mode():
        #         output_sequences = bitnet_model.generate(
        #             **formatted,
        #             max_new_tokens=512,
        #         )
        #         result = tokenizer.decode(output_sequences[0][formatted['input_ids'].shape[-1]:], skip_special_tokens=True)
        else:  # For other models
            formatted = pipe.tokenizer.apply_chat_template(
                text_input,
                tokenize=False,
                **tokenizer_kwargs,
            )

            input_length = len(formatted)

            outputs = pipe(
                formatted,
                max_new_tokens=512,
                generation_kwargs={"skip_special_tokens": True}
            )
            result = outputs[0]["generated_text"][input_length:]

        print(f"Generation completed for {model_name}")

    except Exception as e:
        print(f"Error in inference for {model_name}: {e}")
        print(traceback.format_exc())
        result = f"Error generating response: {str(e)[:200]}..."

    finally:
        # Clean up resources
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    return result