Spaces:
Runtime error
Runtime error
import joblib | |
import pandas as pd | |
from sklearn.impute import SimpleImputer | |
from sklearn.preprocessing import StandardScaler | |
def select_features(features_df: pd.DataFrame): | |
selected_features = ['spectral_contrast_var', 'spectral_contrast_range', 'spectral_contrast_mean', 'F3_mean', 'F2_stdev', 'F3_stdev', 'F1_stdev', 'mfcc_13_std', 'F2_mean', 'mfcc_6_75th_percentile', 'mfcc_12_75th_percentile', 'mfcc_9_75th_percentile', 'mfcc_3_75th_percentile', 'mfcc_12_50th_percentile', 'mfcc_9_50th_percentile', 'mfcc_2_50th_percentile', 'mfcc_5_50th_percentile', 'mfcc_7_50th_percentile', 'f0_skew', 'pause_std', 'asd', 'pause_75th_percentile', 'chroma_11_50th_percentile', 'chroma_3_50th_percentile', 'chroma_6_50th_percentile', 'spectral_flux_skew', 'mfcc_12_25th_percentile', 'mfcc_6_25th_percentile', 'mfcc_2_25th_percentile', 'spectral_bandwidth_min', 'zero_crossing_rate_skew', 'chroma_1_range', 'speaking_rate', 'chroma_12_range', 'chroma_2_range', 'chroma_3_range', 'chroma_5_range', 'chroma_10_range', 'spectral_flatness_skew', 'chroma_6_range', 'chroma_8_range', 'chroma_7_range', 'chroma_9_range', 'f0_kurtosis', 'chroma_11_range', 'spectral_bandwidth_kurtosis', 'chroma_6_max', 'chroma_10_max', 'chroma_2_max', 'chroma_12_max', 'chroma_5_max', 'chroma_7_max', 'chroma_4_max', 'chroma_1_max', 'chroma_11_max', 'chroma_4_std', 'chroma_6_std', 'chroma_7_std', 'chroma_3_max', 'chroma_12_std', 'chroma_11_std', 'chroma_2_std', 'chroma_10_std', 'chroma_3_std', 'chroma_9_std', 'chroma_8_std', 'chroma_5_std', 'chroma_1_std', 'zero_crossing_rate_range', 'mfcc_1_skew', 'spectral_rolloff_range', 'f0_25th_percentile', 'pause_skew', 'chroma_9_min', 'mfcc_13_mean', 'mfcc_11_mean', 'zero_crossing_rate_min', 'spectral_bandwidth_max', 'mfcc_10_max', 'f0_75th_percentile', 'mfcc_5_max', 'mfcc_6_mean', 'mfcc_3_max', 'jitter_local', 'spectral_flux_25th_percentile', 'spectral_flatness_min', 'energy_min', 'shimmer_local', 'spectral_flatness_range'] | |
try: | |
features_df = features_df[selected_features] | |
except KeyError: | |
for feature in selected_features: | |
if feature not in features_df.columns: | |
print(f"Feature {feature} not found in the provided DataFrame.") | |
raise | |
return features_df | |
def impute_missing_values(features_df: pd.DataFrame): | |
"""Impute missing values in feature set.""" | |
imputer = SimpleImputer(strategy='constant', fill_value=0) | |
features_imputed = imputer.fit_transform(features_df) | |
scaler = StandardScaler() | |
features_scaled = scaler.fit_transform(features_imputed) | |
return features_scaled | |
def preprocess(features_df: pd.DataFrame): | |
features_df = select_features(features_df) | |
features_df = impute_missing_values(features_df) | |
return features_df | |
def load_model(): | |
model_path = './models/logistic_regression_model.pkl' | |
model = joblib.load(model_path) | |
return model | |
def predict(features_df: pd.DataFrame): | |
features_df = preprocess(features_df) | |
model = load_model() | |
predictions = model.predict(features_df) | |
# Prediction Probabilities | |
prediction_probabilities = model.predict_proba(features_df) | |
return predictions, prediction_probabilities | |