Ajay Karthick Senthil Kumar
commited on
Commit
·
dc66f8e
0
Parent(s):
New branch for app
Browse files- .gitattributes +35 -0
- .github/workflows/main.yml +21 -0
- .gitignore +6 -0
- README.md +12 -0
- app.py +110 -0
- requirements.txt +2 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
|
.github/workflows/main.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
name: Sync to Hugging Face hub
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches: [app]
|
| 6 |
+
|
| 7 |
+
# to run this workflow manually from the Actions tab
|
| 8 |
+
workflow_dispatch:
|
| 9 |
+
|
| 10 |
+
jobs:
|
| 11 |
+
sync-to-hub:
|
| 12 |
+
runs-on: ubuntu-latest
|
| 13 |
+
steps:
|
| 14 |
+
- uses: actions/checkout@v3
|
| 15 |
+
with:
|
| 16 |
+
ref: app
|
| 17 |
+
fetch-depth: 0
|
| 18 |
+
- name: Push to hub
|
| 19 |
+
env:
|
| 20 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 21 |
+
run: git push --force https://ajaykarthick:[email protected]/spaces/ajaykarthick/text-classifier-naive-bayes app:main
|
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data
|
| 2 |
+
.DS_Store
|
| 3 |
+
.ipynb_checkpoints
|
| 4 |
+
|
| 5 |
+
notebooks
|
| 6 |
+
model
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Text Classifier Naive Bayes
|
| 3 |
+
emoji: 📈
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: gray
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.17.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Naive Bayes Text Classifier Application
|
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import string
|
| 3 |
+
import re
|
| 4 |
+
import pickle
|
| 5 |
+
import huggingface_hub
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import nltk
|
| 9 |
+
nltk.download('stopwords')
|
| 10 |
+
nltk.download('wordnet')
|
| 11 |
+
nltk.download('omw-1.4')
|
| 12 |
+
from nltk.corpus import stopwords
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def clean_review(review):
|
| 17 |
+
review = review.lower()
|
| 18 |
+
review = re.sub(r"http\S+|www.\S+", "", review)
|
| 19 |
+
review = re.sub(r"<[^>]*>", "", review)
|
| 20 |
+
review = review.replace(".", " ")
|
| 21 |
+
|
| 22 |
+
review = "".join([c for c in review if c not in string.punctuation])
|
| 23 |
+
review = " ".join([word for word in re.split('\W+', review)
|
| 24 |
+
if word not in stopwords.words('english')])
|
| 25 |
+
wn = nltk.WordNetLemmatizer()
|
| 26 |
+
review = " ".join([wn.lemmatize(word, 'r') for word in re.split('\W+', review)])
|
| 27 |
+
|
| 28 |
+
return review
|
| 29 |
+
|
| 30 |
+
def find_occurrence(frequency, word, label):
|
| 31 |
+
n = 0
|
| 32 |
+
if (word, label) in frequency:
|
| 33 |
+
n = frequency[(word, label)]
|
| 34 |
+
|
| 35 |
+
return n
|
| 36 |
+
|
| 37 |
+
def classify_text(freqs, logprior, text):
|
| 38 |
+
loglikelihood = {}
|
| 39 |
+
p_w_pos = {}
|
| 40 |
+
p_w_neg = {}
|
| 41 |
+
|
| 42 |
+
# calculate V, the number of unique words in the vocabulary
|
| 43 |
+
vocab = set([word for word, label in freqs.keys()])
|
| 44 |
+
V = len(vocab)
|
| 45 |
+
|
| 46 |
+
#calculate num_pos and num_neg - the total number of positive and negative words for all documents
|
| 47 |
+
num_pos = num_neg = 0
|
| 48 |
+
for word, label in freqs.keys():
|
| 49 |
+
# if the label is positive (greater than zero)
|
| 50 |
+
if label > 0:
|
| 51 |
+
|
| 52 |
+
# Increment the number of positive words by the count for this (word, label) pair
|
| 53 |
+
num_pos += freqs[(word, label)]
|
| 54 |
+
|
| 55 |
+
# else, the label is negative
|
| 56 |
+
else:
|
| 57 |
+
|
| 58 |
+
# increment the number of negative words by the count for this (word,label) pair
|
| 59 |
+
num_neg += freqs[(word, label)]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# process the review to get a list of words
|
| 64 |
+
word_l = clean_review(text).split()
|
| 65 |
+
|
| 66 |
+
# initialize probability to zero
|
| 67 |
+
total_prob = 0
|
| 68 |
+
|
| 69 |
+
# add the logprior
|
| 70 |
+
total_prob += logprior
|
| 71 |
+
|
| 72 |
+
# For each word in the vocabulary...
|
| 73 |
+
for word in word_l:
|
| 74 |
+
# get the positive and negative frequency of the word
|
| 75 |
+
freq_pos = find_occurrence(freqs, word, 1)
|
| 76 |
+
freq_neg = find_occurrence(freqs, word, 0)
|
| 77 |
+
|
| 78 |
+
# calculate the probability that each word is positive, and negative
|
| 79 |
+
p_w_pos[word] = (freq_pos + 1) / (num_pos + V)
|
| 80 |
+
p_w_neg[word] = (freq_neg + 1) / (num_neg + V)
|
| 81 |
+
|
| 82 |
+
if freq_pos + freq_neg > 0:
|
| 83 |
+
# calculate the log likelihood of the word
|
| 84 |
+
loglikelihood[word] = np.log(p_w_pos[word] / p_w_neg[word])
|
| 85 |
+
# add the log likelihood of that word to the probability
|
| 86 |
+
total_prob += loglikelihood[word]
|
| 87 |
+
else:
|
| 88 |
+
loglikelihood[word] = ''
|
| 89 |
+
|
| 90 |
+
if total_prob > 0:
|
| 91 |
+
total_prob = 1
|
| 92 |
+
else:
|
| 93 |
+
total_prob = 0
|
| 94 |
+
|
| 95 |
+
return total_prob
|
| 96 |
+
|
| 97 |
+
model_path = huggingface_hub.hf_hub_download("ajaykarthick/naive-bayes-review-classify-model", "naive-bayes-text-classifier-model")
|
| 98 |
+
|
| 99 |
+
model_params = pickle.load(open(model_path, mode='rb'))
|
| 100 |
+
freqs = model_params['freqs_dict']
|
| 101 |
+
logprior = model_params['logprior']
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def greet(name):
|
| 105 |
+
total_prob = classify_text(freqs, logprior, name)
|
| 106 |
+
print(name, str(total_prob))
|
| 107 |
+
return 'POSITIVE' if total_prob == 0 else 'NEGATIVE'
|
| 108 |
+
|
| 109 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 110 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nltk
|
| 2 |
+
huggingface_hub
|