!pip install git+https://github.com/speechbrain/speechbrain.git@develop import re import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline import torch import numpy as np import torchaudio from speechbrain.inference.classifiers import EncoderClassifier # Load Whisper model for transcription whisper_model_name = "openai/whisper-large" processor = WhisperProcessor.from_pretrained(whisper_model_name) model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) # Initialize the language detection model (using zero-shot classification for language detection) lang_detect_model = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Load the SpeechBrain language ID model language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa", savedir="tmp") # Function to transcribe audio to text using Whisper model def transcribe_audio(audio_file): """ Function to transcribe audio to text using Whisper model. Handles both file input and live audio input. """ # Check if audio_file is a list (Gradio returns a list when multiple clips are recorded) if isinstance(audio_file, list): # Ensure all elements in the list are of the same length before concatenating audio = np.concatenate([np.array(a) for a in audio_file if a is not None]) else: audio = np.array(audio_file) # Ensure it's a 1D array # If audio is stereo (2D array with shape (2, N)), mix the channels by averaging them if audio.ndim > 1: audio = audio.mean(axis=0) # Mix the stereo channels into a mono signal # Ensure the audio is a 1D array (e.g., [N]) if audio.ndim != 1: raise ValueError("The audio input must be a 1D array (mono).") # Prepare input features for Whisper (sampling rate should be 16000 for Whisper) input_features = processor(audio, return_tensors="pt", sampling_rate=48000) # Generate transcription generated_ids = model.generate(input_features["input_features"]) transcription = processor.decode(generated_ids[0], skip_special_tokens=True) return transcription # Function to detect language using SpeechBrain's language ID model def detect_language_speechbrain(audio_file): # Load the audio using torchaudio signal, sample_rate = torchaudio.load(audio_file) # Use SpeechBrain to classify the language of the audio prediction = language_id.classify_batch(signal) # Extract the language ISO code and its confidence language = prediction[3][0] # Extracted language confidence = prediction[1].exp() # Linear scale of confidence return language, confidence.item() # Cleanup function to remove filler words and clean the transcription def cleanup_text(text): """ Function to clean the transcription text by removing filler words, unnecessary spaces, non-alphabetic characters, and ensuring proper capitalization. """ # Step 1: Remove filler words like "uh", "um", etc. text = re.sub(r'\b(uh|um|like|you know|so|actually|basically)\b', '', text, flags=re.IGNORECASE) # Step 2: Remove unwanted characters (e.g., non-alphabetical characters except punctuation) text = re.sub(r'[^a-zA-Z0-9\s,.\'?!]', '', text) # Step 3: Remove extra spaces and ensure proper spacing around punctuation text = re.sub(r'\s+', ' ', text) # Replace multiple spaces with a single space text = re.sub(r'\s([?.!.,])', r'\1', text) # Remove space before punctuation # Step 4: Normalize the whitespace (remove leading/trailing spaces) text = text.strip() # Step 5: Capitalize the first letter of the transcription text = text.capitalize() return text # Main function to process the audio, transcribe it, and detect the language def process_audio(audio_file): try: transcription = transcribe_audio(audio_file) # Transcribe audio to text if not transcription.strip(): # If transcription is empty or just whitespace raise ValueError("Transcription is empty.") # Detect language using SpeechBrain's model language, confidence = detect_language_speechbrain(audio_file) cleaned_text = cleanup_text(transcription) # Clean up the transcription return cleaned_text, language, confidence # Return cleaned transcription, language, and confidence score except Exception as e: # If any error occurs, return the error message return f"Error: {str(e)}", "", "" # Gradio interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): audio_input = gr.Audio(label="Record your voice", type="numpy", scale=1) # Input for live audio (microphone) output_text = gr.Textbox(label="Transcription", scale=1) # Output text for transcription output_lang = gr.Textbox(label="Detected Language", scale=1) # Output text for detected language output_score = gr.Textbox(label="Confidence Score", scale=1) # Output confidence score process_btn = gr.Button("Process Audio") # Button to process audio process_btn.click(fn=process_audio, inputs=[audio_input], outputs=[output_text, output_lang, output_score]) demo.launch(debug=True)