Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
|
6 |
+
# Define a function to make predictions on a single image
|
7 |
+
def predict_single_image(image, model):
|
8 |
+
# Resize and preprocess the image
|
9 |
+
img = image.resize((128, 128))
|
10 |
+
img = np.array(img) / 255.0 # Normalization
|
11 |
+
img = np.expand_dims(img, axis=0) # Add batch dimension
|
12 |
+
|
13 |
+
# Make prediction using the provided model
|
14 |
+
prediction = model.predict(img)
|
15 |
+
|
16 |
+
# Thresholding prediction
|
17 |
+
threshold = 0.5
|
18 |
+
prediction_class = (prediction > threshold).astype(int)
|
19 |
+
|
20 |
+
# Interpret prediction
|
21 |
+
if prediction_class == 1:
|
22 |
+
return "With Mask"
|
23 |
+
else:
|
24 |
+
return "Without Mask"
|
25 |
+
|
26 |
+
# Load the model from .h5 file
|
27 |
+
@st.cache(allow_output_mutation=True)
|
28 |
+
def load_model_from_h5():
|
29 |
+
return load_model('model.h5')
|
30 |
+
|
31 |
+
# Streamlit app
|
32 |
+
def main():
|
33 |
+
st.title("Mask Detection App")
|
34 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
35 |
+
|
36 |
+
if uploaded_file is not None:
|
37 |
+
# Load the image
|
38 |
+
image = Image.open(uploaded_file)
|
39 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
40 |
+
|
41 |
+
# Button to make prediction
|
42 |
+
if st.button('Predict'):
|
43 |
+
# Load the model from .h5 file
|
44 |
+
model_h5 = load_model_from_h5()
|
45 |
+
# Make predictions using the provided model
|
46 |
+
prediction = predict_single_image(image, model_h5)
|
47 |
+
st.write("Prediction:", prediction)
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|