ajeetkumar01's picture
Update app.py
2fa0eaf verified
raw
history blame
4.54 kB
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import gradio as gr
# # Load pre-trained GPT-2 model and tokenizer
# model_name = "gpt2-large"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModelForCausalLM.from_pretrained(model_name)
# def generate_text(input_text, max_length=32, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
# """
# Generate text based on the given input text.
# Parameters:
# - input_text (str): The input text to start generation from.
# - max_length (int): Maximum length of the generated text.
# - num_beams (int): Number of beams for beam search.
# - do_sample (bool): Whether to use sampling or not.
# - no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
# Returns:
# - generated_text (str): The generated text.
# """
# # Encode the input text and move it to the appropriate device
# input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
# # Generate text using the model
# output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
# do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
# # Decode the generated output
# generated_text = tokenizer.decode(output[0])
# return generated_text
# # def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9):
# # """
# # Generate text with nucleus sampling based on the given input text.
# # Parameters:
# # - input_text (str): The input text to start generation from.
# # - max_length (int): Maximum length of the generated text.
# # - do_sample (bool): Whether to use sampling or not.
# # - top_p (float): Nucleus sampling parameter.
# # Returns:
# # - generated_text (str): The generated text.
# # """
# # # Encode the input text and move it to the appropriate device
# # input_ids = tokenizer(input_text, return_tensors='pt')['input_ids']
# # # Generate text using nucleus sampling
# # output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p)
# # # Decode the generated output
# # generated_text = tokenizer.decode(output[0])
# # return generated_text
# # Create Gradio interface
# input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
# output_text = gr.Textbox(label="Generated Text")
# gr.Interface(generate_text, input_text, output_text,
# title="Text Generation with GPT-2",
# description="Generate text using the GPT-2 model.",
# theme="default",
# allow_flagging="never").launch(share=True)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
# Load pre-trained GPT-2 model and tokenizer
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id)
def generate_text(input_text, max_length=32, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
"""
Generate text based on the given input text.
Parameters:
- input_text (str): The input text to start generation from.
- max_length (int): Maximum length of the generated text.
- num_beams (int): Number of beams for beam search.
- do_sample (bool): Whether to use sampling or not.
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
Returns:
- generated_text (str): The generated text.
"""
# Encode the input text and move it to the appropriate device
input_ids = tokenizer(input_text, return_tensors='pt', padding=True)['input_ids']
# Generate text using the model
output = model.generate(input_ids, max_length=max_length, num_beams=num_beams,
do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size)
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Create Gradio interface
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
output_text = gr.Textbox(label="Generated Text")
gr.Interface(generate_text, input_text, output_text,
title="Text Generation with GPT-2",
description="Generate text using the GPT-2 model.",
theme="default",
allow_flagging="never").launch()