Update app.py
Browse files
app.py
CHANGED
@@ -14,14 +14,12 @@ model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
14 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
15 |
"""
|
16 |
Generate text based on the given input text.
|
17 |
-
|
18 |
Parameters:
|
19 |
- input_text (str): The input text to start generation from.
|
20 |
- max_length (int): Maximum length of the generated text.
|
21 |
- num_beams (int): Number of beams for beam search.
|
22 |
- do_sample (bool): Whether to use sampling or not.
|
23 |
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
|
24 |
-
|
25 |
Returns:
|
26 |
- generated_text (str): The generated text.
|
27 |
"""
|
@@ -38,13 +36,11 @@ def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_re
|
|
38 |
def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9):
|
39 |
"""
|
40 |
Generate text with nucleus sampling based on the given input text.
|
41 |
-
|
42 |
Parameters:
|
43 |
- input_text (str): The input text to start generation from.
|
44 |
- max_length (int): Maximum length of the generated text.
|
45 |
- do_sample (bool): Whether to use sampling or not.
|
46 |
- top_p (float): Nucleus sampling parameter.
|
47 |
-
|
48 |
Returns:
|
49 |
- generated_text (str): The generated text.
|
50 |
"""
|
@@ -60,11 +56,19 @@ def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True,
|
|
60 |
# Create Gradio interface
|
61 |
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
|
62 |
output_text1 = gr.Textbox(label="Generated Text")
|
63 |
-
output_text2 = gr.Textbox(label="
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
gr.Interface(generate_text, input_text, output_text1,output_text2,
|
67 |
title="Text Generation with GPT-2",
|
68 |
description="Generate text using the GPT-2 model.",
|
69 |
theme="default", # Change theme to default
|
70 |
-
allow_flagging="never"
|
|
|
|
14 |
def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2):
|
15 |
"""
|
16 |
Generate text based on the given input text.
|
|
|
17 |
Parameters:
|
18 |
- input_text (str): The input text to start generation from.
|
19 |
- max_length (int): Maximum length of the generated text.
|
20 |
- num_beams (int): Number of beams for beam search.
|
21 |
- do_sample (bool): Whether to use sampling or not.
|
22 |
- no_repeat_ngram_size (int): Size of the n-gram to avoid repetition.
|
|
|
23 |
Returns:
|
24 |
- generated_text (str): The generated text.
|
25 |
"""
|
|
|
36 |
def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9):
|
37 |
"""
|
38 |
Generate text with nucleus sampling based on the given input text.
|
|
|
39 |
Parameters:
|
40 |
- input_text (str): The input text to start generation from.
|
41 |
- max_length (int): Maximum length of the generated text.
|
42 |
- do_sample (bool): Whether to use sampling or not.
|
43 |
- top_p (float): Nucleus sampling parameter.
|
|
|
44 |
Returns:
|
45 |
- generated_text (str): The generated text.
|
46 |
"""
|
|
|
56 |
# Create Gradio interface
|
57 |
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...")
|
58 |
output_text1 = gr.Textbox(label="Generated Text")
|
59 |
+
output_text2 = gr.Textbox(label="Generated Text with Nucleus Search")
|
60 |
|
61 |
+
# Set examples to None or empty list if not available
|
62 |
+
examples = [
|
63 |
+
["I am happy."],
|
64 |
+
["This is a good day."],
|
65 |
+
["It is raining outside."],
|
66 |
+
None # Example for output_text2
|
67 |
+
]
|
68 |
|
69 |
+
gr.Interface(generate_text, input_text, output_text1, output_text2,
|
70 |
title="Text Generation with GPT-2",
|
71 |
description="Generate text using the GPT-2 model.",
|
72 |
theme="default", # Change theme to default
|
73 |
+
allow_flagging="never",
|
74 |
+
examples=examples).launch(share=True)
|