import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Load pre-trained GPT-2 model and tokenizer model_name = "gpt2-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2): """ Generate text based on the given input text. Parameters: - input_text (str): The input text to start generation from. - max_length (int): Maximum length of the generated text. - num_beams (int): Number of beams for beam search. - do_sample (bool): Whether to use sampling or not. - no_repeat_ngram_size (int): Size of the n-gram to avoid repetition. Returns: - generated_text (str): The generated text. """ # Encode the input text and move it to the appropriate device input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'] # Generate text using the model output = model.generate(input_ids, max_length=max_length, num_beams=num_beams, do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size) # Decode the generated output generated_text = tokenizer.decode(output[0]) return generated_text # def generate_text_with_nucleus_search(input_text, max_length=16, do_sample=True, top_p=0.9): # """ # Generate text with nucleus sampling based on the given input text. # Parameters: # - input_text (str): The input text to start generation from. # - max_length (int): Maximum length of the generated text. # - do_sample (bool): Whether to use sampling or not. # - top_p (float): Nucleus sampling parameter. # Returns: # - generated_text (str): The generated text. # """ # # Encode the input text and move it to the appropriate device # input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'] # # Generate text using nucleus sampling # output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p) # # Decode the generated output # generated_text = tokenizer.decode(output[0]) # return generated_text # Create Gradio input interface input_text_interface = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text for generation...") # Create Gradio output interface for regular text generation output_text_interface1 = gr.Textbox(label="Generated Text (Regular)", placeholder="Generated text will appear here...") # Interface for regular text generation interface1 = gr.Interface(generate_text, input_text_interface, output_text_interface1, title="Text Generation with GPT-2", description="Generate text using the GPT-2 model with regular generation method.", allow_flagging="never") # Create Gradio output interface for text generation with nucleus sampling # output_text_interface2 = gr.Textbox(label="Generated Text (Nucleus Sampling)", placeholder="Generated text will appear here...") # # Interface for text generation with nucleus sampling # interface2 = gr.Interface(generate_text_with_nucleus_search, input_text_interface, output_text_interface2, # title="Text Generation with Nucleus Sampling", # description="Generate text using nucleus sampling with the GPT-2 model.", # allow_flagging="never") # Launch both interfaces interface1.launch(share=True) # interface2.launch(share=True)