import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Check if GPU is available, otherwise use CPU # device = "cuda" if torch.cuda.is_available() else "cpu" # Load pre-trained GPT-2 model and tokenizer model_name = "gpt2-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(input_text, max_length=16, num_beams=5, do_sample=False, no_repeat_ngram_size=2): """ Generate text based on the given input text. Parameters: - input_text (str): The input text to start generation from. - max_length (int): Maximum length of the generated text. - num_beams (int): Number of beams for beam search. - do_sample (bool): Whether to use sampling or not. - no_repeat_ngram_size (int): Size of the n-gram to avoid repetition. Returns: - generated_text (str): The generated text. """ # Encode the input text and move it to the appropriate device input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device) # Generate text using the model output = model.generate(input_ids, max_length=max_length, num_beams=num_beams, do_sample=do_sample, no_repeat_ngram_size=no_repeat_ngram_size) # Decode the generated output generated_text = tokenizer.decode(output[0]) return generated_text def generate_text_with_nucleus_search(input_text, max_length=128, do_sample=True, top_p=0.9): """ Generate text with nucleus sampling based on the given input text. Parameters: - input_text (str): The input text to start generation from. - max_length (int): Maximum length of the generated text. - do_sample (bool): Whether to use sampling or not. - top_p (float): Nucleus sampling parameter. Returns: - generated_text (str): The generated text. """ # Encode the input text and move it to the appropriate device input_ids = tokenizer(input_text, return_tensors='pt')['input_ids'].to(device) # Generate text using nucleus sampling output = model.generate(input_ids, max_length=max_length, do_sample=do_sample, top_p=top_p) # Decode the generated output generated_text = tokenizer.decode(output[0]) return generated_text # Create Gradio interface input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter text for text generation...") output_text = gr.Textbox(label="Generated Text") gr.Interface(generate_text, input_text, output_text, title="Text Generation with GPT-2", description="Generate text using the GPT-2 model.", theme="huggingface", allow_flagging="never").launch(share=True)