from PIL import Image, ImageDraw,ImageFont import gradio as gr import torch from transformers import pipeline modelname= "SenseTime/deformable-detr-with-box-refine" modelpath = 'models/models--SenseTime--deformable-detr-with-box-refine/snapshots/2e9e461623a8fdc296e19666c46c8a4389a3a6fe' def draw_bounding_boxes(image, detections, color=(0, 255, 0), thickness=2, font_path=None, font_size=12): draw = ImageDraw.Draw(image) for detection in detections: xmin, ymin, xmax, ymax = detection['box']['xmin'], detection['box']['ymin'], detection['box']['xmax'], detection['box']['ymax'] draw.rectangle(((xmin, ymin), (xmax, ymax)), outline=color, width=thickness) if font_path: try: font = ImageFont.truetype(font_path, font_size) label_text = f"{detection['label']}: {detection['score']:.2f}" text_width, text_height = draw.textsize(label_text, font=font) draw.rectangle(((xmin, ymin), (xmin + text_width + 5, ymin + text_height + 5)), fill=(0, 0, 0, 0.5)) # Semi-transparent black background draw.text((xmin, ymin), label_text, fill=color, font=font) except (IOError, OSError): print(f"Warning: Could not load font '{font_path}'. Labels will not be drawn.") return image def hf_pipeline(model_name=None,model_path=None): model = model_path if model_name == None else model_name print(f"=============model: {model} =============") device = "cuda" if torch.cuda.is_available() else "cpu" image_detector = pipeline("object-detection", model=model,device=device) return image_detector def detect_image_withbox(image): obj_detector = hf_pipeline(modelname) detections = obj_detector(image) image_with_boxes = draw_bounding_boxes(image.copy(), detections) print(detections) return image_with_boxes demo = gr.Interface(fn=detect_image_withbox, inputs=[gr.Image(label="Select Image",type="pil")], outputs=[gr.Image(label="Processed Image With Boxes", type="pil")], title="@SmartChoiceLearningHub HF Project 2 : Object Detector With Box", description="This app detects objects in an image and draws bounding boxes around them.") demo.launch()