File size: 2,813 Bytes
29b560e
3b47068
314c465
a22e0d4
e93ccdc
3b47068
a22e0d4
0580074
29b560e
a22e0d4
 
 
 
06e297b
a22e0d4
06e297b
a22e0d4
 
 
 
 
 
 
 
314c465
 
73c4071
 
 
a22e0d4
 
 
0580074
 
 
 
0a193bf
 
 
 
 
 
 
 
a22e0d4
 
 
 
 
 
 
 
29b560e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch

MODEL = "m-a-p/OpenCodeInterpreter-DS-33B"
CHAT_TEMPLATE = "{%- set found_item = false -%}\n{%- for message in messages -%}\n    {%- if message['role'] == 'system' -%}\n        {%- set found_item = true -%}\n    {%- endif -%}\n{%- endfor -%}\n{%- if not found_item -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\\n'}}\n{%- endif %}\n{%- for message in messages %}\n    {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n    {%- else %}\n        {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n        {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n        {%- endif %}\n    {%- endif %}\n{%- endfor %}\n{{'### Response:\\n'}}\n"

system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance"

def user_prompt_for(python):
    return f"Rewrite this python code to C++. You must search for the maximum performance. \
    Format your response in Markdown. This is the python Code: \
    \n\n\
    {python}"

def messages_for(python):
    return [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_prompt_for(python)}
    ]

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, device_map="auto")
model.eval()

decode_kwargs = dict(skip_special_tokens=True)
streamer = TextIteratorStreamer(tokenizer, decode_kwargs=decode_kwargs)

cplusplus = None
def translate(python):
    inputs = tokenizer.apply_chat_template(
                        messages_for(python),
                        chat_template=CHAT_TEMPLATE,
                        return_tensors="pt").to(model.device)
    generation_kwargs = dict(
                            inputs,
                            streamer=streamer,
                            max_new_tokens=1024,
                            do_sample=False,
                            pad_token_id=tokenizer.eos_token_id,
                            eos_token_id=tokenizer.eos_token_id
                            )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    cplusplus = ""
    for chunk in streamer:
        cplusplus += chunk
        yield cplusplus

demo = gr.Interface(fn=translate, inputs="code", outputs="markdown")
demo.launch()