Arturo Jiménez de los Galanes Reguillos
Restore chat template
005c893
raw
history blame
2.09 kB
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import torch
MODEL = "m-a-p/OpenCodeInterpreter-DS-33B"
CHAT_TEMPLATE = "{% for message in messages %}\n{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}\n{% endfor %}\n{% if add_generation_prompt %}\n{{ '<|im_start|>assistant\n' }}\n{% endif %}"
system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance"
def user_prompt_for(python):
return f"Rewrite this python code to C++. You must search for the maximum performance. \
Format your response in Markdown. This is the python Code: \
\n\n\
{python}"
def messages_for(python):
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt_for(python)}
]
tokenizer = AutoTokenizer.from_pretrained(MODEL)
tokenizer.chat_template = CHAT_TEMPLATE
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, device_map="auto")
model.eval()
decode_kwargs = dict(skip_special_tokens=True)
streamer = TextIteratorStreamer(tokenizer, decode_kwargs=decode_kwargs)
cplusplus = None
def translate(python):
inputs = tokenizer.apply_chat_template(
messages_for(python),
return_tensors="pt").to(model.device)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
cplusplus = ""
for chunk in streamer:
cplusplus += chunk
yield cplusplus
demo = gr.Interface(fn=translate, inputs="code", outputs="markdown")
demo.launch()