ajinkyakolhe112 commited on
Commit
4f94c4a
·
verified ·
1 Parent(s): 8129089

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -7
app.py CHANGED
@@ -4,17 +4,22 @@ model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eva
4
 
5
 
6
  import requests
7
- from PIL import Image
8
  from torchvision import transforms
9
 
10
  # Download human-readable labels for ImageNet.
11
  response = requests.get("https://git.io/JJkYN")
12
- labels = response.text.split("\n")
13
-
14
- def predict(inp):
15
- inp = transforms.ToTensor()(inp).unsqueeze(0)
 
 
 
 
 
16
  with torch.no_grad():
17
- prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
18
  confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
19
  return confidences
20
 
@@ -29,7 +34,7 @@ with gr.Blocks(title="Image Classification for 1000 Objects", css=".gradio-conta
29
  output_label = gr.Label(label="Probabilities", num_top_classes=3)
30
 
31
  send_btn = gr.Button("Infer")
32
- send_btn.click(fn=predict, inputs=input_image, outputs=output_label)
33
 
34
  with gr.Row():
35
  gr.Examples(['./lion.jpg'] , label='Sample images : Lion', inputs=input_image)
 
4
 
5
 
6
  import requests
7
+ import PIL
8
  from torchvision import transforms
9
 
10
  # Download human-readable labels for ImageNet.
11
  response = requests.get("https://git.io/JJkYN")
12
+ labels = response.text.split("\n")
13
+
14
+ def classify_image(image_filepath):
15
+ PIL_image = PIL.Image.open(image_filepath).convert('RGB')
16
+ transformations = transforms.Compose([
17
+ transforms.Resize(size = (224,224)),
18
+ transforms.ToTensor(),
19
+ ])
20
+ image_tensors = transformations(PIL_image).unsqueeze(0)
21
  with torch.no_grad():
22
+ prediction = torch.nn.functional.softmax(model(image_tensors)[0], dim=0)
23
  confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
24
  return confidences
25
 
 
34
  output_label = gr.Label(label="Probabilities", num_top_classes=3)
35
 
36
  send_btn = gr.Button("Infer")
37
+ send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label)
38
 
39
  with gr.Row():
40
  gr.Examples(['./lion.jpg'] , label='Sample images : Lion', inputs=input_image)