File size: 21,641 Bytes
09cc77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
import numpy as np
import cv2
import torch
import torchvision.transforms.functional as TF

import sys as _sys
from keyword import iskeyword as _iskeyword
from operator import itemgetter as _itemgetter

from segment_anything import SamPredictor

from comfy import model_management


################################################################################
### namedtuple
################################################################################

try:
    from _collections import _tuplegetter
except ImportError:
    _tuplegetter = lambda index, doc: property(_itemgetter(index), doc=doc)

def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None):
    """Returns a new subclass of tuple with named fields.



    >>> Point = namedtuple('Point', ['x', 'y'])

    >>> Point.__doc__                   # docstring for the new class

    'Point(x, y)'

    >>> p = Point(11, y=22)             # instantiate with positional args or keywords

    >>> p[0] + p[1]                     # indexable like a plain tuple

    33

    >>> x, y = p                        # unpack like a regular tuple

    >>> x, y

    (11, 22)

    >>> p.x + p.y                       # fields also accessible by name

    33

    >>> d = p._asdict()                 # convert to a dictionary

    >>> d['x']

    11

    >>> Point(**d)                      # convert from a dictionary

    Point(x=11, y=22)

    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields

    Point(x=100, y=22)



    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split()
    field_names = list(map(str, field_names))
    typename = _sys.intern(str(typename))

    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not name.isidentifier()
                or _iskeyword(name)
                or name.startswith('_')
                or name in seen):
                field_names[index] = f'_{index}'
            seen.add(name)

    for name in [typename] + field_names:
        if type(name) is not str:
            raise TypeError('Type names and field names must be strings')
        if not name.isidentifier():
            raise ValueError('Type names and field names must be valid '
                             f'identifiers: {name!r}')
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             f'keyword: {name!r}')

    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             f'{name!r}')
        if name in seen:
            raise ValueError(f'Encountered duplicate field name: {name!r}')
        seen.add(name)

    field_defaults = {}
    if defaults is not None:
        defaults = tuple(defaults)
        if len(defaults) > len(field_names):
            raise TypeError('Got more default values than field names')
        field_defaults = dict(reversed(list(zip(reversed(field_names),
                                                reversed(defaults)))))

    # Variables used in the methods and docstrings
    field_names = tuple(map(_sys.intern, field_names))
    num_fields = len(field_names)
    arg_list = ', '.join(field_names)
    if num_fields == 1:
        arg_list += ','
    repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')'
    tuple_new = tuple.__new__
    _dict, _tuple, _len, _map, _zip = dict, tuple, len, map, zip

    # Create all the named tuple methods to be added to the class namespace

    namespace = {
        '_tuple_new': tuple_new,
        '__builtins__': {},
        '__name__': f'namedtuple_{typename}',
    }
    code = f'lambda _cls, {arg_list}: _tuple_new(_cls, ({arg_list}))'
    __new__ = eval(code, namespace)
    __new__.__name__ = '__new__'
    __new__.__doc__ = f'Create new instance of {typename}({arg_list})'
    if defaults is not None:
        __new__.__defaults__ = defaults

    @classmethod
    def _make(cls, iterable):
        result = tuple_new(cls, iterable)
        if _len(result) != num_fields:
            raise TypeError(f'Expected {num_fields} arguments, got {len(result)}')
        return result

    _make.__func__.__doc__ = (f'Make a new {typename} object from a sequence '
                              'or iterable')

    def _replace(self, /, **kwds):
        result = self._make(_map(kwds.pop, field_names, self))
        if kwds:
            raise ValueError(f'Got unexpected field names: {list(kwds)!r}')
        return result

    _replace.__doc__ = (f'Return a new {typename} object replacing specified '
                        'fields with new values')

    def __repr__(self):
        'Return a nicely formatted representation string'
        return self.__class__.__name__ + repr_fmt % self

    def _asdict(self):
        'Return a new dict which maps field names to their values.'
        return _dict(_zip(self._fields, self))

    def __getnewargs__(self):
        'Return self as a plain tuple.  Used by copy and pickle.'
        return _tuple(self)

    # Modify function metadata to help with introspection and debugging
    for method in (
        __new__,
        _make.__func__,
        _replace,
        __repr__,
        _asdict,
        __getnewargs__,
    ):
        method.__qualname__ = f'{typename}.{method.__name__}'

    # Build-up the class namespace dictionary
    # and use type() to build the result class
    class_namespace = {
        '__doc__': f'{typename}({arg_list})',
        '__slots__': (),
        '_fields': field_names,
        '_field_defaults': field_defaults,
        '__new__': __new__,
        '_make': _make,
        '_replace': _replace,
        '__repr__': __repr__,
        '_asdict': _asdict,
        '__getnewargs__': __getnewargs__,
        '__match_args__': field_names,
    }
    for index, name in enumerate(field_names):
        doc = _sys.intern(f'Alias for field number {index}')
        class_namespace[name] = _tuplegetter(index, doc)

    result = type(typename, (tuple,), class_namespace)

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython), or where the user has
    # specified a particular module.
    if module is None:
        try:
            module = _sys._getframe(1).f_globals.get('__name__', '__main__')
        except (AttributeError, ValueError):
            pass
    if module is not None:
        result.__module__ = module

    return result


SEG = namedtuple("SEG",
                 ['cropped_image', 'cropped_mask', 'confidence', 'crop_region', 'bbox', 'label', 'control_net_wrapper'],
                 defaults=[None])

def crop_ndarray4(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[:, y1:y2, x1:x2, :]

    return cropped

crop_tensor4 = crop_ndarray4

def crop_ndarray2(npimg, crop_region):
    x1 = crop_region[0]
    y1 = crop_region[1]
    x2 = crop_region[2]
    y2 = crop_region[3]

    cropped = npimg[y1:y2, x1:x2]

    return cropped

def crop_image(image, crop_region):
    return crop_tensor4(image, crop_region)

def normalize_region(limit, startp, size):
    if startp < 0:
        new_endp = min(limit, size)
        new_startp = 0
    elif startp + size > limit:
        new_startp = max(0, limit - size)
        new_endp = limit
    else:
        new_startp = startp
        new_endp = min(limit, startp+size)

    return int(new_startp), int(new_endp)

def make_crop_region(w, h, bbox, crop_factor, crop_min_size=None):
    x1 = bbox[0]
    y1 = bbox[1]
    x2 = bbox[2]
    y2 = bbox[3]

    bbox_w = x2 - x1
    bbox_h = y2 - y1

    crop_w = bbox_w * crop_factor
    crop_h = bbox_h * crop_factor

    if crop_min_size is not None:
        crop_w = max(crop_min_size, crop_w)
        crop_h = max(crop_min_size, crop_h)

    kernel_x = x1 + bbox_w / 2
    kernel_y = y1 + bbox_h / 2

    new_x1 = int(kernel_x - crop_w / 2)
    new_y1 = int(kernel_y - crop_h / 2)

    # make sure position in (w,h)
    new_x1, new_x2 = normalize_region(w, new_x1, crop_w)
    new_y1, new_y2 = normalize_region(h, new_y1, crop_h)

    return [new_x1, new_y1, new_x2, new_y2]

def create_segmasks(results):
    bboxs = results[1]
    segms = results[2]
    confidence = results[3]

    results = []
    for i in range(len(segms)):
        item = (bboxs[i], segms[i].astype(np.float32), confidence[i])
        results.append(item)
    return results

def dilate_masks(segmasks, dilation_factor, iter=1):
    if dilation_factor == 0:
        return segmasks

    dilated_masks = []
    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    kernel = cv2.UMat(kernel)

    for i in range(len(segmasks)):
        cv2_mask = segmasks[i][1]

        cv2_mask = cv2.UMat(cv2_mask)

        if dilation_factor > 0:
            dilated_mask = cv2.dilate(cv2_mask, kernel, iter)
        else:
            dilated_mask = cv2.erode(cv2_mask, kernel, iter)

        dilated_mask = dilated_mask.get()

        item = (segmasks[i][0], dilated_mask, segmasks[i][2])
        dilated_masks.append(item)

    return dilated_masks

def is_same_device(a, b):
    a_device = torch.device(a) if isinstance(a, str) else a
    b_device = torch.device(b) if isinstance(b, str) else b
    return a_device.type == b_device.type and a_device.index == b_device.index

class SafeToGPU:
    def __init__(self, size):
        self.size = size

    def to_device(self, obj, device):
        if is_same_device(device, 'cpu'):
            obj.to(device)
        else:
            if is_same_device(obj.device, 'cpu'):  # cpu to gpu
                model_management.free_memory(self.size * 1.3, device)
                if model_management.get_free_memory(device) > self.size * 1.3:
                    try:
                        obj.to(device)
                    except:
                        print(f"WARN: The model is not moved to the '{device}' due to insufficient memory. [1]")
                else:
                    print(f"WARN: The model is not moved to the '{device}' due to insufficient memory. [2]")

def center_of_bbox(bbox):
    w, h = bbox[2] - bbox[0], bbox[3] - bbox[1]
    return bbox[0] + w/2, bbox[1] + h/2

def sam_predict(predictor, points, plabs, bbox, threshold):
    point_coords = None if not points else np.array(points)
    point_labels = None if not plabs else np.array(plabs)

    box = np.array([bbox]) if bbox is not None else None

    cur_masks, scores, _ = predictor.predict(point_coords=point_coords, point_labels=point_labels, box=box)

    total_masks = []

    selected = False
    max_score = 0
    max_mask = None
    for idx in range(len(scores)):
        if scores[idx] > max_score:
            max_score = scores[idx]
            max_mask = cur_masks[idx]

        if scores[idx] >= threshold:
            selected = True
            total_masks.append(cur_masks[idx])
        else:
            pass

    if not selected and max_mask is not None:
        total_masks.append(max_mask)

    return total_masks

def make_2d_mask(mask):
    if len(mask.shape) == 4:
        return mask.squeeze(0).squeeze(0)

    elif len(mask.shape) == 3:
        return mask.squeeze(0)

    return mask

def gen_detection_hints_from_mask_area(x, y, mask, threshold, use_negative):
    mask = make_2d_mask(mask)

    points = []
    plabs = []

    # minimum sampling step >= 3
    y_step = max(3, int(mask.shape[0] / 20))
    x_step = max(3, int(mask.shape[1] / 20))

    for i in range(0, len(mask), y_step):
        for j in range(0, len(mask[i]), x_step):
            if mask[i][j] > threshold:
                points.append((x + j, y + i))
                plabs.append(1)
            elif use_negative and mask[i][j] == 0:
                points.append((x + j, y + i))
                plabs.append(0)

    return points, plabs

def gen_negative_hints(w, h, x1, y1, x2, y2):
    npoints = []
    nplabs = []

    # minimum sampling step >= 3
    y_step = max(3, int(w / 20))
    x_step = max(3, int(h / 20))

    for i in range(10, h - 10, y_step):
        for j in range(10, w - 10, x_step):
            if not (x1 - 10 <= j and j <= x2 + 10 and y1 - 10 <= i and i <= y2 + 10):
                npoints.append((j, i))
                nplabs.append(0)

    return npoints, nplabs

def generate_detection_hints(image, seg, center, detection_hint, dilated_bbox, mask_hint_threshold, use_small_negative,

                             mask_hint_use_negative):
    [x1, y1, x2, y2] = dilated_bbox

    points = []
    plabs = []
    if detection_hint == "center-1":
        points.append(center)
        plabs = [1]  # 1 = foreground point, 0 = background point

    elif detection_hint == "horizontal-2":
        gap = (x2 - x1) / 3
        points.append((x1 + gap, center[1]))
        points.append((x1 + gap * 2, center[1]))
        plabs = [1, 1]

    elif detection_hint == "vertical-2":
        gap = (y2 - y1) / 3
        points.append((center[0], y1 + gap))
        points.append((center[0], y1 + gap * 2))
        plabs = [1, 1]

    elif detection_hint == "rect-4":
        x_gap = (x2 - x1) / 3
        y_gap = (y2 - y1) / 3
        points.append((x1 + x_gap, center[1]))
        points.append((x1 + x_gap * 2, center[1]))
        points.append((center[0], y1 + y_gap))
        points.append((center[0], y1 + y_gap * 2))
        plabs = [1, 1, 1, 1]

    elif detection_hint == "diamond-4":
        x_gap = (x2 - x1) / 3
        y_gap = (y2 - y1) / 3
        points.append((x1 + x_gap, y1 + y_gap))
        points.append((x1 + x_gap * 2, y1 + y_gap))
        points.append((x1 + x_gap, y1 + y_gap * 2))
        points.append((x1 + x_gap * 2, y1 + y_gap * 2))
        plabs = [1, 1, 1, 1]

    elif detection_hint == "mask-point-bbox":
        center = center_of_bbox(seg.bbox)
        points.append(center)
        plabs = [1]

    elif detection_hint == "mask-area":
        points, plabs = gen_detection_hints_from_mask_area(seg.crop_region[0], seg.crop_region[1],
                                                           seg.cropped_mask,
                                                           mask_hint_threshold, use_small_negative)

    if mask_hint_use_negative == "Outter":
        npoints, nplabs = gen_negative_hints(image.shape[0], image.shape[1],
                                             seg.crop_region[0], seg.crop_region[1],
                                             seg.crop_region[2], seg.crop_region[3])

        points += npoints
        plabs += nplabs

    return points, plabs

def combine_masks2(masks):
    if len(masks) == 0:
        return None
    else:
        initial_cv2_mask = np.array(masks[0]).astype(np.uint8)
        combined_cv2_mask = initial_cv2_mask

        for i in range(1, len(masks)):
            cv2_mask = np.array(masks[i]).astype(np.uint8)

            if combined_cv2_mask.shape == cv2_mask.shape:
                combined_cv2_mask = cv2.bitwise_or(combined_cv2_mask, cv2_mask)
            else:
                # do nothing - incompatible mask
                pass

        mask = torch.from_numpy(combined_cv2_mask)
        return mask

def dilate_mask(mask, dilation_factor, iter=1):
    if dilation_factor == 0:
        return make_2d_mask(mask)

    mask = make_2d_mask(mask)

    kernel = np.ones((abs(dilation_factor), abs(dilation_factor)), np.uint8)

    mask = cv2.UMat(mask)
    kernel = cv2.UMat(kernel)

    if dilation_factor > 0:
        result = cv2.dilate(mask, kernel, iter)
    else:
        result = cv2.erode(mask, kernel, iter)

    return result.get()

def convert_and_stack_masks(masks):
    if len(masks) == 0:
        return None

    mask_tensors = []
    for mask in masks:
        mask_array = np.array(mask, dtype=np.uint8)
        mask_tensor = torch.from_numpy(mask_array)
        mask_tensors.append(mask_tensor)

    stacked_masks = torch.stack(mask_tensors, dim=0)
    stacked_masks = stacked_masks.unsqueeze(1)

    return stacked_masks

def merge_and_stack_masks(stacked_masks, group_size):
    if stacked_masks is None:
        return None

    num_masks = stacked_masks.size(0)
    merged_masks = []

    for i in range(0, num_masks, group_size):
        subset_masks = stacked_masks[i:i + group_size]
        merged_mask = torch.any(subset_masks, dim=0)
        merged_masks.append(merged_mask)

    if len(merged_masks) > 0:
        merged_masks = torch.stack(merged_masks, dim=0)

    return merged_masks

def make_sam_mask_segmented(sam_model, segs, image, detection_hint, dilation,

                            threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative):
    if sam_model.is_auto_mode:
        device = model_management.get_torch_device()
        sam_model.safe_to.to_device(sam_model, device=device)

    try:
        predictor = SamPredictor(sam_model)
        image = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
        predictor.set_image(image, "RGB")

        total_masks = []

        use_small_negative = mask_hint_use_negative == "Small"

        # seg_shape = segs[0]
        segs = segs[1]
        if detection_hint == "mask-points":
            points = []
            plabs = []

            for i in range(len(segs)):
                bbox = segs[i].bbox
                center = center_of_bbox(bbox)
                points.append(center)

                # small point is background, big point is foreground
                if use_small_negative and bbox[2] - bbox[0] < 10:
                    plabs.append(0)
                else:
                    plabs.append(1)

            detected_masks = sam_predict(predictor, points, plabs, None, threshold)
            total_masks += detected_masks

        else:
            for i in range(len(segs)):
                bbox = segs[i].bbox
                center = center_of_bbox(bbox)
                x1 = max(bbox[0] - bbox_expansion, 0)
                y1 = max(bbox[1] - bbox_expansion, 0)
                x2 = min(bbox[2] + bbox_expansion, image.shape[1])
                y2 = min(bbox[3] + bbox_expansion, image.shape[0])

                dilated_bbox = [x1, y1, x2, y2]

                points, plabs = generate_detection_hints(image, segs[i], center, detection_hint, dilated_bbox,
                                                         mask_hint_threshold, use_small_negative,
                                                         mask_hint_use_negative)

                detected_masks = sam_predict(predictor, points, plabs, dilated_bbox, threshold)

                total_masks += detected_masks

        # merge every collected masks
        mask = combine_masks2(total_masks)

    finally:
        if sam_model.is_auto_mode:
            sam_model.cpu()

        pass

    mask_working_device = torch.device("cpu")

    if mask is not None:
        mask = mask.float()
        mask = dilate_mask(mask.cpu().numpy(), dilation)
        mask = torch.from_numpy(mask)
        mask = mask.to(device=mask_working_device)
    else:
        # Extracting batch, height and width
        height, width, _ = image.shape
        mask = torch.zeros(
            (height, width), dtype=torch.float32, device=mask_working_device
        )  # empty mask

    stacked_masks = convert_and_stack_masks(total_masks)

    return (mask, merge_and_stack_masks(stacked_masks, group_size=3))

def tensor2mask(t: torch.Tensor) -> torch.Tensor:
    size = t.size()
    if (len(size) < 4):
        return t
    if size[3] == 1:
        return t[:,:,:,0]
    elif size[3] == 4:
        # Not sure what the right thing to do here is. Going to try to be a little smart and use alpha unless all alpha is 1 in case we'll fallback to RGB behavior
        if torch.min(t[:, :, :, 3]).item() != 1.:
            return t[:,:,:,3]
    return TF.rgb_to_grayscale(tensor2rgb(t).permute(0,3,1,2), num_output_channels=1)[:,0,:,:]

def tensor2rgb(t: torch.Tensor) -> torch.Tensor:
    size = t.size()
    if (len(size) < 4):
        return t.unsqueeze(3).repeat(1, 1, 1, 3)
    if size[3] == 1:
        return t.repeat(1, 1, 1, 3)
    elif size[3] == 4:
        return t[:, :, :, :3]
    else:
        return t

def tensor2rgba(t: torch.Tensor) -> torch.Tensor:
    size = t.size()
    if (len(size) < 4):
        return t.unsqueeze(3).repeat(1, 1, 1, 4)
    elif size[3] == 1:
        return t.repeat(1, 1, 1, 4)
    elif size[3] == 3:
        alpha_tensor = torch.ones((size[0], size[1], size[2], 1))
        return torch.cat((t, alpha_tensor), dim=3)
    else:
        return t