File size: 7,866 Bytes
09cc77a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os, glob

from PIL import Image

import modules.scripts as scripts
# from modules.upscaler import Upscaler, UpscalerData
from modules import scripts, scripts_postprocessing
from modules.processing import (
    StableDiffusionProcessing,
    StableDiffusionProcessingImg2Img,
)
from modules.shared import state
from scripts.reactor_logger import logger
from scripts.reactor_swapper import (
    swap_face,
    swap_face_many,
    get_current_faces_model,
    analyze_faces,
    half_det_size,
    providers
)
import folder_paths
import comfy.model_management as model_management


def get_models():
    swappers = [
        "insightface",
        "reswapper"
    ]
    models_list = []
    for folder in swappers:
        models_folder = folder + "/*"
        models_path = os.path.join(folder_paths.models_dir,models_folder)
        models = glob.glob(models_path)
        models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
        models_list.extend(models)
    return models_list


class FaceSwapScript(scripts.Script):

    def process(

        self,

        p: StableDiffusionProcessing,

        img,

        enable,

        source_faces_index,

        faces_index,

        model,

        swap_in_source,

        swap_in_generated,

        gender_source,

        gender_target,

        face_model,

        faces_order,

        face_boost_enabled,

        face_restore_model,

        face_restore_visibility,

        codeformer_weight,

        interpolation,

    ):
        self.enable = enable
        if self.enable:

            self.source = img    
            self.swap_in_generated = swap_in_generated
            self.gender_source = gender_source
            self.gender_target = gender_target
            self.model = model
            self.face_model = face_model
            self.faces_order = faces_order
            self.face_boost_enabled = face_boost_enabled
            self.face_restore_model = face_restore_model
            self.face_restore_visibility = face_restore_visibility
            self.codeformer_weight = codeformer_weight
            self.interpolation = interpolation
            self.source_faces_index = [
                int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric()
            ]
            self.faces_index = [
                int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
            ]
            if len(self.source_faces_index) == 0:
                self.source_faces_index = [0]
            if len(self.faces_index) == 0:
                self.faces_index = [0]
            
            if self.gender_source is None or self.gender_source == "no":
                self.gender_source = 0
            elif self.gender_source  == "female":
                self.gender_source = 1
            elif self.gender_source  == "male":
                self.gender_source = 2
            
            if self.gender_target is None or self.gender_target == "no":
                self.gender_target = 0
            elif self.gender_target  == "female":
                self.gender_target = 1
            elif self.gender_target  == "male":
                self.gender_target = 2

            # if self.source is not None:
            if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
                logger.status(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)

                if len(p.init_images) == 1:

                    result = swap_face(
                        self.source,
                        p.init_images[0],
                        source_faces_index=self.source_faces_index,
                        faces_index=self.faces_index,
                        model=self.model,
                        gender_source=self.gender_source,
                        gender_target=self.gender_target,
                        face_model=self.face_model,
                        faces_order=self.faces_order,
                        face_boost_enabled=self.face_boost_enabled,
                        face_restore_model=self.face_restore_model,
                        face_restore_visibility=self.face_restore_visibility,
                        codeformer_weight=self.codeformer_weight,
                        interpolation=self.interpolation,
                    )
                    p.init_images[0] = result

                    # for i in range(len(p.init_images)):
                    #     if state.interrupted or model_management.processing_interrupted():
                    #         logger.status("Interrupted by User")
                    #         break
                    #     if len(p.init_images) > 1:
                    #         logger.status(f"Swap in %s", i)
                    #     result = swap_face(
                    #         self.source,
                    #         p.init_images[i],
                    #         source_faces_index=self.source_faces_index,
                    #         faces_index=self.faces_index,
                    #         model=self.model,
                    #         gender_source=self.gender_source,
                    #         gender_target=self.gender_target,
                    #         face_model=self.face_model,
                    #     )
                    #     p.init_images[i] = result

                elif len(p.init_images) > 1:
                    result = swap_face_many(
                        self.source,
                        p.init_images,
                        source_faces_index=self.source_faces_index,
                        faces_index=self.faces_index,
                        model=self.model,
                        gender_source=self.gender_source,
                        gender_target=self.gender_target,
                        face_model=self.face_model,
                        faces_order=self.faces_order,
                        face_boost_enabled=self.face_boost_enabled,
                        face_restore_model=self.face_restore_model,
                        face_restore_visibility=self.face_restore_visibility,
                        codeformer_weight=self.codeformer_weight,
                        interpolation=self.interpolation,
                    )
                    p.init_images = result

                logger.status("--Done!--")
            # else:
            #     logger.error(f"Please provide a source face")

    def postprocess_batch(self, p, *args, **kwargs):
        if self.enable:
            images = kwargs["images"]

    def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
        if self.enable and self.swap_in_generated:
            if self.source is not None:
                logger.status(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
                image: Image.Image = script_pp.image
                result = swap_face(
                    self.source,
                    image,
                    source_faces_index=self.source_faces_index,
                    faces_index=self.faces_index,
                    model=self.model,
                    upscale_options=self.upscale_options,
                    gender_source=self.gender_source,
                    gender_target=self.gender_target,
                )
                try:
                    pp = scripts_postprocessing.PostprocessedImage(result)
                    pp.info = {}
                    p.extra_generation_params.update(pp.info)
                    script_pp.image = pp.image
                except:
                    logger.error(f"Cannot create a result image")