Spaces:
Configuration error
Configuration error
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torchvision.utils import make_grid | |
import cv2 | |
import math | |
import logging | |
import hashlib | |
from insightface.app.common import Face | |
from safetensors.torch import save_file, safe_open | |
from tqdm import tqdm | |
import urllib.request | |
import onnxruntime | |
from typing import Any | |
import folder_paths | |
ORT_SESSION = None | |
def tensor_to_pil(img_tensor, batch_index=0): | |
# Convert tensor of shape [batch_size, channels, height, width] at the batch_index to PIL Image | |
img_tensor = img_tensor[batch_index].unsqueeze(0) | |
i = 255. * img_tensor.cpu().numpy() | |
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze()) | |
return img | |
def batch_tensor_to_pil(img_tensor): | |
# Convert tensor of shape [batch_size, channels, height, width] to a list of PIL Images | |
return [tensor_to_pil(img_tensor, i) for i in range(img_tensor.shape[0])] | |
def pil_to_tensor(image): | |
# Takes a PIL image and returns a tensor of shape [1, height, width, channels] | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image).unsqueeze(0) | |
if len(image.shape) == 3: # If the image is grayscale, add a channel dimension | |
image = image.unsqueeze(-1) | |
return image | |
def batched_pil_to_tensor(images): | |
# Takes a list of PIL images and returns a tensor of shape [batch_size, height, width, channels] | |
return torch.cat([pil_to_tensor(image) for image in images], dim=0) | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
else: | |
return _totensor(imgs, bgr2rgb, float32) | |
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): | |
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): | |
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') | |
if torch.is_tensor(tensor): | |
tensor = [tensor] | |
result = [] | |
for _tensor in tensor: | |
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
n_dim = _tensor.dim() | |
if n_dim == 4: | |
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 3: | |
img_np = _tensor.numpy() | |
img_np = img_np.transpose(1, 2, 0) | |
if img_np.shape[2] == 1: # gray image | |
img_np = np.squeeze(img_np, axis=2) | |
else: | |
if rgb2bgr: | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) | |
elif n_dim == 2: | |
img_np = _tensor.numpy() | |
else: | |
raise TypeError('Only support 4D, 3D or 2D tensor. ' f'But received with dimension: {n_dim}') | |
if out_type == np.uint8: | |
# Unlike MATLAB, numpy.unit8() WILL NOT round by default. | |
img_np = (img_np * 255.0).round() | |
img_np = img_np.astype(out_type) | |
result.append(img_np) | |
if len(result) == 1: | |
result = result[0] | |
return result | |
def rgba2rgb_tensor(rgba): | |
r = rgba[...,0] | |
g = rgba[...,1] | |
b = rgba[...,2] | |
return torch.stack([r, g, b], dim=3) | |
def download(url, path, name): | |
request = urllib.request.urlopen(url) | |
total = int(request.headers.get('Content-Length', 0)) | |
with tqdm(total=total, desc=f'[ReActor] Downloading {name} to {path}', unit='B', unit_scale=True, unit_divisor=1024) as progress: | |
urllib.request.urlretrieve(url, path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) | |
def move_path(old_path, new_path): | |
if os.path.exists(old_path): | |
try: | |
models = os.listdir(old_path) | |
for model in models: | |
move_old_path = os.path.join(old_path, model) | |
move_new_path = os.path.join(new_path, model) | |
os.rename(move_old_path, move_new_path) | |
os.rmdir(old_path) | |
except Exception as e: | |
print(f"Error: {e}") | |
new_path = old_path | |
def addLoggingLevel(levelName, levelNum, methodName=None): | |
if not methodName: | |
methodName = levelName.lower() | |
def logForLevel(self, message, *args, **kwargs): | |
if self.isEnabledFor(levelNum): | |
self._log(levelNum, message, args, **kwargs) | |
def logToRoot(message, *args, **kwargs): | |
logging.log(levelNum, message, *args, **kwargs) | |
logging.addLevelName(levelNum, levelName) | |
setattr(logging, levelName, levelNum) | |
setattr(logging.getLoggerClass(), methodName, logForLevel) | |
setattr(logging, methodName, logToRoot) | |
def get_image_md5hash(image: Image.Image): | |
md5hash = hashlib.md5(image.tobytes()) | |
return md5hash.hexdigest() | |
def save_face_model(face: Face, filename: str) -> None: | |
try: | |
tensors = { | |
"bbox": torch.tensor(face["bbox"]), | |
"kps": torch.tensor(face["kps"]), | |
"det_score": torch.tensor(face["det_score"]), | |
"landmark_3d_68": torch.tensor(face["landmark_3d_68"]), | |
"pose": torch.tensor(face["pose"]), | |
"landmark_2d_106": torch.tensor(face["landmark_2d_106"]), | |
"embedding": torch.tensor(face["embedding"]), | |
"gender": torch.tensor(face["gender"]), | |
"age": torch.tensor(face["age"]), | |
} | |
save_file(tensors, filename) | |
print(f"Face model has been saved to '{filename}'") | |
except Exception as e: | |
print(f"Error: {e}") | |
def load_face_model(filename: str): | |
face = {} | |
with safe_open(filename, framework="pt") as f: | |
for k in f.keys(): | |
face[k] = f.get_tensor(k).numpy() | |
return Face(face) | |
def get_ort_session(): | |
global ORT_SESSION | |
return ORT_SESSION | |
def set_ort_session(model_path, providers) -> Any: | |
global ORT_SESSION | |
onnxruntime.set_default_logger_severity(3) | |
ORT_SESSION = onnxruntime.InferenceSession(model_path, providers=providers) | |
return ORT_SESSION | |
def clear_ort_session() -> None: | |
global ORT_SESSION | |
ORT_SESSION = None | |
def prepare_cropped_face(cropped_face): | |
cropped_face = cropped_face[:, :, ::-1] / 255.0 | |
cropped_face = (cropped_face - 0.5) / 0.5 | |
cropped_face = np.expand_dims(cropped_face.transpose(2, 0, 1), axis = 0).astype(np.float32) | |
return cropped_face | |
def normalize_cropped_face(cropped_face): | |
cropped_face = np.clip(cropped_face, -1, 1) | |
cropped_face = (cropped_face + 1) / 2 | |
cropped_face = cropped_face.transpose(1, 2, 0) | |
cropped_face = (cropped_face * 255.0).round() | |
cropped_face = cropped_face.astype(np.uint8)[:, :, ::-1] | |
return cropped_face | |
# author: Trung0246 ---> | |
def add_folder_path_and_extensions(folder_name, full_folder_paths, extensions): | |
# Iterate over the list of full folder paths | |
for full_folder_path in full_folder_paths: | |
# Use the provided function to add each model folder path | |
folder_paths.add_model_folder_path(folder_name, full_folder_path) | |
# Now handle the extensions. If the folder name already exists, update the extensions | |
if folder_name in folder_paths.folder_names_and_paths: | |
# Unpack the current paths and extensions | |
current_paths, current_extensions = folder_paths.folder_names_and_paths[folder_name] | |
# Update the extensions set with the new extensions | |
updated_extensions = current_extensions | extensions | |
# Reassign the updated tuple back to the dictionary | |
folder_paths.folder_names_and_paths[folder_name] = (current_paths, updated_extensions) | |
else: | |
# If the folder name was not present, add_model_folder_path would have added it with the last path | |
# Now we just need to update the set of extensions as it would be an empty set | |
# Also ensure that all paths are included (since add_model_folder_path adds only one path at a time) | |
folder_paths.folder_names_and_paths[folder_name] = (full_folder_paths, extensions) | |
# <--- | |