Spaces:
Configuration error
Configuration error
import os, glob, sys | |
import logging | |
import torch | |
import torch.nn.functional as torchfn | |
from torchvision.transforms.functional import normalize | |
from torchvision.ops import masks_to_boxes | |
import numpy as np | |
import cv2 | |
import math | |
from typing import List | |
from PIL import Image | |
from scipy import stats | |
from insightface.app.common import Face | |
from segment_anything import sam_model_registry | |
from modules.processing import StableDiffusionProcessingImg2Img | |
from modules.shared import state | |
# from comfy_extras.chainner_models import model_loading | |
import comfy.model_management as model_management | |
import comfy.utils | |
import folder_paths | |
import scripts.reactor_version | |
from r_chainner import model_loading | |
from scripts.reactor_faceswap import ( | |
FaceSwapScript, | |
get_models, | |
get_current_faces_model, | |
analyze_faces, | |
half_det_size, | |
providers | |
) | |
from scripts.reactor_swapper import ( | |
unload_all_models, | |
) | |
from scripts.reactor_logger import logger | |
from reactor_utils import ( | |
batch_tensor_to_pil, | |
batched_pil_to_tensor, | |
tensor_to_pil, | |
img2tensor, | |
tensor2img, | |
save_face_model, | |
load_face_model, | |
download, | |
set_ort_session, | |
prepare_cropped_face, | |
normalize_cropped_face, | |
add_folder_path_and_extensions, | |
rgba2rgb_tensor | |
) | |
from reactor_patcher import apply_patch | |
from r_facelib.utils.face_restoration_helper import FaceRestoreHelper | |
from r_basicsr.utils.registry import ARCH_REGISTRY | |
import scripts.r_archs.codeformer_arch | |
import scripts.r_masking.subcore as subcore | |
import scripts.r_masking.core as core | |
import scripts.r_masking.segs as masking_segs | |
models_dir = folder_paths.models_dir | |
REACTOR_MODELS_PATH = os.path.join(models_dir, "reactor") | |
FACE_MODELS_PATH = os.path.join(REACTOR_MODELS_PATH, "faces") | |
if not os.path.exists(REACTOR_MODELS_PATH): | |
os.makedirs(REACTOR_MODELS_PATH) | |
if not os.path.exists(FACE_MODELS_PATH): | |
os.makedirs(FACE_MODELS_PATH) | |
dir_facerestore_models = os.path.join(models_dir, "facerestore_models") | |
os.makedirs(dir_facerestore_models, exist_ok=True) | |
folder_paths.folder_names_and_paths["facerestore_models"] = ([dir_facerestore_models], folder_paths.supported_pt_extensions) | |
BLENDED_FACE_MODEL = None | |
FACE_SIZE: int = 512 | |
FACE_HELPER = None | |
if "ultralytics" not in folder_paths.folder_names_and_paths: | |
add_folder_path_and_extensions("ultralytics_bbox", [os.path.join(models_dir, "ultralytics", "bbox")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("ultralytics_segm", [os.path.join(models_dir, "ultralytics", "segm")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("ultralytics", [os.path.join(models_dir, "ultralytics")], folder_paths.supported_pt_extensions) | |
if "sams" not in folder_paths.folder_names_and_paths: | |
add_folder_path_and_extensions("sams", [os.path.join(models_dir, "sams")], folder_paths.supported_pt_extensions) | |
def get_facemodels(): | |
models_path = os.path.join(FACE_MODELS_PATH, "*") | |
models = glob.glob(models_path) | |
models = [x for x in models if x.endswith(".safetensors")] | |
return models | |
def get_restorers(): | |
models_path = os.path.join(models_dir, "facerestore_models/*") | |
models = glob.glob(models_path) | |
models = [x for x in models if (x.endswith(".pth") or x.endswith(".onnx"))] | |
if len(models) == 0: | |
fr_urls = [ | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.3.pth", | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GFPGANv1.4.pth", | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/codeformer-v0.1.0.pth", | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-512.onnx", | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-1024.onnx", | |
"https://huggingface.co/datasets/Gourieff/ReActor/resolve/main/models/facerestore_models/GPEN-BFR-2048.onnx", | |
] | |
for model_url in fr_urls: | |
model_name = os.path.basename(model_url) | |
model_path = os.path.join(dir_facerestore_models, model_name) | |
download(model_url, model_path, model_name) | |
models = glob.glob(models_path) | |
models = [x for x in models if (x.endswith(".pth") or x.endswith(".onnx"))] | |
return models | |
def get_model_names(get_models): | |
models = get_models() | |
names = [] | |
for x in models: | |
names.append(os.path.basename(x)) | |
names.sort(key=str.lower) | |
names.insert(0, "none") | |
return names | |
def model_names(): | |
models = get_models() | |
return {os.path.basename(x): x for x in models} | |
class reactor: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}), | |
"input_image": ("IMAGE",), | |
"swap_model": (list(model_names().keys()),), | |
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],), | |
"face_restore_model": (get_model_names(get_restorers),), | |
"face_restore_visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}), | |
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}), | |
"detect_gender_input": (["no","female","male"], {"default": "no"}), | |
"detect_gender_source": (["no","female","male"], {"default": "no"}), | |
"input_faces_index": ("STRING", {"default": "0"}), | |
"source_faces_index": ("STRING", {"default": "0"}), | |
"console_log_level": ([0, 1, 2], {"default": 1}), | |
}, | |
"optional": { | |
"source_image": ("IMAGE",), | |
"face_model": ("FACE_MODEL",), | |
"face_boost": ("FACE_BOOST",), | |
}, | |
"hidden": {"faces_order": "FACES_ORDER"}, | |
} | |
RETURN_TYPES = ("IMAGE","FACE_MODEL") | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def __init__(self): | |
# self.face_helper = None | |
self.faces_order = ["large-small", "large-small"] | |
# self.face_size = FACE_SIZE | |
self.face_boost_enabled = False | |
self.restore = True | |
self.boost_model = None | |
self.interpolation = "Bicubic" | |
self.boost_model_visibility = 1 | |
self.boost_cf_weight = 0.5 | |
def restore_face( | |
self, | |
input_image, | |
face_restore_model, | |
face_restore_visibility, | |
codeformer_weight, | |
facedetection, | |
): | |
result = input_image | |
if face_restore_model != "none" and not model_management.processing_interrupted(): | |
global FACE_SIZE, FACE_HELPER | |
self.face_helper = FACE_HELPER | |
faceSize = 512 | |
if "1024" in face_restore_model.lower(): | |
faceSize = 1024 | |
elif "2048" in face_restore_model.lower(): | |
faceSize = 2048 | |
logger.status(f"Restoring with {face_restore_model} | Face Size is set to {faceSize}") | |
model_path = folder_paths.get_full_path("facerestore_models", face_restore_model) | |
device = model_management.get_torch_device() | |
if "codeformer" in face_restore_model.lower(): | |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")( | |
dim_embd=512, | |
codebook_size=1024, | |
n_head=8, | |
n_layers=9, | |
connect_list=["32", "64", "128", "256"], | |
).to(device) | |
checkpoint = torch.load(model_path)["params_ema"] | |
codeformer_net.load_state_dict(checkpoint) | |
facerestore_model = codeformer_net.eval() | |
elif ".onnx" in face_restore_model: | |
ort_session = set_ort_session(model_path, providers=providers) | |
ort_session_inputs = {} | |
facerestore_model = ort_session | |
else: | |
sd = comfy.utils.load_torch_file(model_path, safe_load=True) | |
facerestore_model = model_loading.load_state_dict(sd).eval() | |
facerestore_model.to(device) | |
if faceSize != FACE_SIZE or self.face_helper is None: | |
self.face_helper = FaceRestoreHelper(1, face_size=faceSize, crop_ratio=(1, 1), det_model=facedetection, save_ext='png', use_parse=True, device=device) | |
FACE_SIZE = faceSize | |
FACE_HELPER = self.face_helper | |
image_np = 255. * result.numpy() | |
total_images = image_np.shape[0] | |
out_images = [] | |
for i in range(total_images): | |
if total_images > 1: | |
logger.status(f"Restoring {i+1}") | |
cur_image_np = image_np[i,:, :, ::-1] | |
original_resolution = cur_image_np.shape[0:2] | |
if facerestore_model is None or self.face_helper is None: | |
return result | |
self.face_helper.clean_all() | |
self.face_helper.read_image(cur_image_np) | |
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) | |
self.face_helper.align_warp_face() | |
restored_face = None | |
for idx, cropped_face in enumerate(self.face_helper.cropped_faces): | |
# if ".pth" in face_restore_model: | |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) | |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) | |
try: | |
with torch.no_grad(): | |
if ".onnx" in face_restore_model: # ONNX models | |
for ort_session_input in ort_session.get_inputs(): | |
if ort_session_input.name == "input": | |
cropped_face_prep = prepare_cropped_face(cropped_face) | |
ort_session_inputs[ort_session_input.name] = cropped_face_prep | |
if ort_session_input.name == "weight": | |
weight = np.array([ 1 ], dtype = np.double) | |
ort_session_inputs[ort_session_input.name] = weight | |
output = ort_session.run(None, ort_session_inputs)[0][0] | |
restored_face = normalize_cropped_face(output) | |
else: # PTH models | |
output = facerestore_model(cropped_face_t, w=codeformer_weight)[0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0] | |
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) | |
del output | |
torch.cuda.empty_cache() | |
except Exception as error: | |
print(f"\tFailed inference: {error}", file=sys.stderr) | |
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) | |
if face_restore_visibility < 1: | |
restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility | |
restored_face = restored_face.astype("uint8") | |
self.face_helper.add_restored_face(restored_face) | |
self.face_helper.get_inverse_affine(None) | |
restored_img = self.face_helper.paste_faces_to_input_image() | |
restored_img = restored_img[:, :, ::-1] | |
if original_resolution != restored_img.shape[0:2]: | |
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_AREA) | |
self.face_helper.clean_all() | |
# out_images[i] = restored_img | |
out_images.append(restored_img) | |
if state.interrupted or model_management.processing_interrupted(): | |
logger.status("Interrupted by User") | |
return input_image | |
restored_img_np = np.array(out_images).astype(np.float32) / 255.0 | |
restored_img_tensor = torch.from_numpy(restored_img_np) | |
result = restored_img_tensor | |
return result | |
def execute(self, enabled, input_image, swap_model, detect_gender_source, detect_gender_input, source_faces_index, input_faces_index, console_log_level, face_restore_model,face_restore_visibility, codeformer_weight, facedetection, source_image=None, face_model=None, faces_order=None, face_boost=None): | |
if face_boost is not None: | |
self.face_boost_enabled = face_boost["enabled"] | |
self.boost_model = face_boost["boost_model"] | |
self.interpolation = face_boost["interpolation"] | |
self.boost_model_visibility = face_boost["visibility"] | |
self.boost_cf_weight = face_boost["codeformer_weight"] | |
self.restore = face_boost["restore_with_main_after"] | |
else: | |
self.face_boost_enabled = False | |
if faces_order is None: | |
faces_order = self.faces_order | |
apply_patch(console_log_level) | |
if not enabled: | |
return (input_image,face_model) | |
elif source_image is None and face_model is None: | |
logger.error("Please provide 'source_image' or `face_model`") | |
return (input_image,face_model) | |
if face_model == "none": | |
face_model = None | |
script = FaceSwapScript() | |
pil_images = batch_tensor_to_pil(input_image) | |
if source_image is not None: | |
source = tensor_to_pil(source_image) | |
else: | |
source = None | |
p = StableDiffusionProcessingImg2Img(pil_images) | |
script.process( | |
p=p, | |
img=source, | |
enable=True, | |
source_faces_index=source_faces_index, | |
faces_index=input_faces_index, | |
model=swap_model, | |
swap_in_source=True, | |
swap_in_generated=True, | |
gender_source=detect_gender_source, | |
gender_target=detect_gender_input, | |
face_model=face_model, | |
faces_order=faces_order, | |
# face boost: | |
face_boost_enabled=self.face_boost_enabled, | |
face_restore_model=self.boost_model, | |
face_restore_visibility=self.boost_model_visibility, | |
codeformer_weight=self.boost_cf_weight, | |
interpolation=self.interpolation, | |
) | |
result = batched_pil_to_tensor(p.init_images) | |
if face_model is None: | |
current_face_model = get_current_faces_model() | |
face_model_to_provide = current_face_model[0] if (current_face_model is not None and len(current_face_model) > 0) else face_model | |
else: | |
face_model_to_provide = face_model | |
if self.restore or not self.face_boost_enabled: | |
result = reactor.restore_face(self,result,face_restore_model,face_restore_visibility,codeformer_weight,facedetection) | |
return (result,face_model_to_provide) | |
class ReActorPlusOpt: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}), | |
"input_image": ("IMAGE",), | |
"swap_model": (list(model_names().keys()),), | |
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],), | |
"face_restore_model": (get_model_names(get_restorers),), | |
"face_restore_visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}), | |
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}), | |
}, | |
"optional": { | |
"source_image": ("IMAGE",), | |
"face_model": ("FACE_MODEL",), | |
"options": ("OPTIONS",), | |
"face_boost": ("FACE_BOOST",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE","FACE_MODEL") | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def __init__(self): | |
# self.face_helper = None | |
self.faces_order = ["large-small", "large-small"] | |
self.detect_gender_input = "no" | |
self.detect_gender_source = "no" | |
self.input_faces_index = "0" | |
self.source_faces_index = "0" | |
self.console_log_level = 1 | |
# self.face_size = 512 | |
self.face_boost_enabled = False | |
self.restore = True | |
self.boost_model = None | |
self.interpolation = "Bicubic" | |
self.boost_model_visibility = 1 | |
self.boost_cf_weight = 0.5 | |
def execute(self, enabled, input_image, swap_model, facedetection, face_restore_model, face_restore_visibility, codeformer_weight, source_image=None, face_model=None, options=None, face_boost=None): | |
if options is not None: | |
self.faces_order = [options["input_faces_order"], options["source_faces_order"]] | |
self.console_log_level = options["console_log_level"] | |
self.detect_gender_input = options["detect_gender_input"] | |
self.detect_gender_source = options["detect_gender_source"] | |
self.input_faces_index = options["input_faces_index"] | |
self.source_faces_index = options["source_faces_index"] | |
if face_boost is not None: | |
self.face_boost_enabled = face_boost["enabled"] | |
self.restore = face_boost["restore_with_main_after"] | |
else: | |
self.face_boost_enabled = False | |
result = reactor.execute( | |
self,enabled,input_image,swap_model,self.detect_gender_source,self.detect_gender_input,self.source_faces_index,self.input_faces_index,self.console_log_level,face_restore_model,face_restore_visibility,codeformer_weight,facedetection,source_image,face_model,self.faces_order, face_boost=face_boost | |
) | |
return result | |
class LoadFaceModel: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"face_model": (get_model_names(get_facemodels),), | |
} | |
} | |
RETURN_TYPES = ("FACE_MODEL",) | |
FUNCTION = "load_model" | |
CATEGORY = "π ReActor" | |
def load_model(self, face_model): | |
self.face_model = face_model | |
self.face_models_path = FACE_MODELS_PATH | |
if self.face_model != "none": | |
face_model_path = os.path.join(self.face_models_path, self.face_model) | |
out = load_face_model(face_model_path) | |
else: | |
out = None | |
return (out, ) | |
class BuildFaceModel: | |
def __init__(self): | |
self.output_dir = FACE_MODELS_PATH | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"save_mode": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}), | |
"send_only": ("BOOLEAN", {"default": False, "label_off": "NO", "label_on": "YES"}), | |
"face_model_name": ("STRING", {"default": "default"}), | |
"compute_method": (["Mean", "Median", "Mode"], {"default": "Mean"}), | |
}, | |
"optional": { | |
"images": ("IMAGE",), | |
"face_models": ("FACE_MODEL",), | |
} | |
} | |
RETURN_TYPES = ("FACE_MODEL",) | |
FUNCTION = "blend_faces" | |
OUTPUT_NODE = True | |
CATEGORY = "π ReActor" | |
def build_face_model(self, image: Image.Image, det_size=(640, 640)): | |
logging.StreamHandler.terminator = "\n" | |
if image is None: | |
error_msg = "Please load an Image" | |
logger.error(error_msg) | |
return error_msg | |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
face_model = analyze_faces(image, det_size) | |
if len(face_model) == 0: | |
print("") | |
det_size_half = half_det_size(det_size) | |
face_model = analyze_faces(image, det_size_half) | |
if face_model is not None and len(face_model) > 0: | |
print("...........................................................", end=" ") | |
if face_model is not None and len(face_model) > 0: | |
return face_model[0] | |
else: | |
no_face_msg = "No face found, please try another image" | |
# logger.error(no_face_msg) | |
return no_face_msg | |
def blend_faces(self, save_mode, send_only, face_model_name, compute_method, images=None, face_models=None): | |
global BLENDED_FACE_MODEL | |
blended_face: Face = BLENDED_FACE_MODEL | |
if send_only and blended_face is None: | |
send_only = False | |
if (images is not None or face_models is not None) and not send_only: | |
faces = [] | |
embeddings = [] | |
apply_patch(1) | |
if images is not None: | |
images_list: List[Image.Image] = batch_tensor_to_pil(images) | |
n = len(images_list) | |
for i,image in enumerate(images_list): | |
logging.StreamHandler.terminator = " " | |
logger.status(f"Building Face Model {i+1} of {n}...") | |
face = self.build_face_model(image) | |
if isinstance(face, str): | |
logger.error(f"No faces found in image {i+1}, skipping") | |
continue | |
else: | |
print(f"{int(((i+1)/n)*100)}%") | |
faces.append(face) | |
embeddings.append(face.embedding) | |
elif face_models is not None: | |
n = len(face_models) | |
for i,face_model in enumerate(face_models): | |
logging.StreamHandler.terminator = " " | |
logger.status(f"Extracting Face Model {i+1} of {n}...") | |
face = face_model | |
if isinstance(face, str): | |
logger.error(f"No faces found for face_model {i+1}, skipping") | |
continue | |
else: | |
print(f"{int(((i+1)/n)*100)}%") | |
faces.append(face) | |
embeddings.append(face.embedding) | |
logging.StreamHandler.terminator = "\n" | |
if len(faces) > 0: | |
# compute_method_name = "Mean" if compute_method == 0 else "Median" if compute_method == 1 else "Mode" | |
logger.status(f"Blending with Compute Method '{compute_method}'...") | |
blended_embedding = np.mean(embeddings, axis=0) if compute_method == "Mean" else np.median(embeddings, axis=0) if compute_method == "Median" else stats.mode(embeddings, axis=0)[0].astype(np.float32) | |
blended_face = Face( | |
bbox=faces[0].bbox, | |
kps=faces[0].kps, | |
det_score=faces[0].det_score, | |
landmark_3d_68=faces[0].landmark_3d_68, | |
pose=faces[0].pose, | |
landmark_2d_106=faces[0].landmark_2d_106, | |
embedding=blended_embedding, | |
gender=faces[0].gender, | |
age=faces[0].age | |
) | |
if blended_face is not None: | |
BLENDED_FACE_MODEL = blended_face | |
if save_mode: | |
face_model_path = os.path.join(FACE_MODELS_PATH, face_model_name + ".safetensors") | |
save_face_model(blended_face,face_model_path) | |
# done_msg = f"Face model has been saved to '{face_model_path}'" | |
# logger.status(done_msg) | |
logger.status("--Done!--") | |
# return (blended_face,) | |
else: | |
no_face_msg = "Something went wrong, please try another set of images" | |
logger.error(no_face_msg) | |
# return (blended_face,) | |
# logger.status("--Done!--") | |
if images is None and face_models is None: | |
logger.error("Please provide `images` or `face_models`") | |
return (blended_face,) | |
class SaveFaceModel: | |
def __init__(self): | |
self.output_dir = FACE_MODELS_PATH | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"save_mode": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}), | |
"face_model_name": ("STRING", {"default": "default"}), | |
"select_face_index": ("INT", {"default": 0, "min": 0}), | |
}, | |
"optional": { | |
"image": ("IMAGE",), | |
"face_model": ("FACE_MODEL",), | |
} | |
} | |
RETURN_TYPES = () | |
FUNCTION = "save_model" | |
OUTPUT_NODE = True | |
CATEGORY = "π ReActor" | |
def save_model(self, save_mode, face_model_name, select_face_index, image=None, face_model=None, det_size=(640, 640)): | |
if save_mode and image is not None: | |
source = tensor_to_pil(image) | |
source = cv2.cvtColor(np.array(source), cv2.COLOR_RGB2BGR) | |
apply_patch(1) | |
logger.status("Building Face Model...") | |
face_model_raw = analyze_faces(source, det_size) | |
if len(face_model_raw) == 0: | |
det_size_half = half_det_size(det_size) | |
face_model_raw = analyze_faces(source, det_size_half) | |
try: | |
face_model = face_model_raw[select_face_index] | |
except: | |
logger.error("No face(s) found") | |
return face_model_name | |
logger.status("--Done!--") | |
if save_mode and (face_model != "none" or face_model is not None): | |
face_model_path = os.path.join(self.output_dir, face_model_name + ".safetensors") | |
save_face_model(face_model,face_model_path) | |
if image is None and face_model is None: | |
logger.error("Please provide `face_model` or `image`") | |
return face_model_name | |
class RestoreFace: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"facedetection": (["retinaface_resnet50", "retinaface_mobile0.25", "YOLOv5l", "YOLOv5n"],), | |
"model": (get_model_names(get_restorers),), | |
"visibility": ("FLOAT", {"default": 1, "min": 0.0, "max": 1, "step": 0.05}), | |
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
# def __init__(self): | |
# self.face_helper = None | |
# self.face_size = 512 | |
def execute(self, image, model, visibility, codeformer_weight, facedetection): | |
result = reactor.restore_face(self,image,model,visibility,codeformer_weight,facedetection) | |
return (result,) | |
class MaskHelper: | |
def __init__(self): | |
# self.threshold = 0.5 | |
# self.dilation = 10 | |
# self.crop_factor = 3.0 | |
# self.drop_size = 1 | |
self.labels = "all" | |
self.detailer_hook = None | |
self.device_mode = "AUTO" | |
self.detection_hint = "center-1" | |
# self.sam_dilation = 0 | |
# self.sam_threshold = 0.93 | |
# self.bbox_expansion = 0 | |
# self.mask_hint_threshold = 0.7 | |
# self.mask_hint_use_negative = "False" | |
# self.force_resize_width = 0 | |
# self.force_resize_height = 0 | |
# self.resize_behavior = "source_size" | |
def INPUT_TYPES(s): | |
bboxs = ["bbox/"+x for x in folder_paths.get_filename_list("ultralytics_bbox")] | |
segms = ["segm/"+x for x in folder_paths.get_filename_list("ultralytics_segm")] | |
sam_models = [x for x in folder_paths.get_filename_list("sams") if 'hq' not in x] | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"swapped_image": ("IMAGE",), | |
"bbox_model_name": (bboxs + segms, ), | |
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}), | |
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}), | |
"bbox_drop_size": ("INT", {"min": 1, "max": 8192, "step": 1, "default": 10}), | |
"sam_model_name": (sam_models, ), | |
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}), | |
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}), | |
"mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"mask_hint_use_negative": (["False", "Small", "Outter"], ), | |
"morphology_operation": (["dilate", "erode", "open", "close"],), | |
"morphology_distance": ("INT", {"default": 0, "min": 0, "max": 128, "step": 1}), | |
"blur_radius": ("INT", {"default": 9, "min": 0, "max": 48, "step": 1}), | |
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 3., "step": 0.01}), | |
}, | |
"optional": { | |
"mask_optional": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE","MASK","IMAGE","IMAGE") | |
RETURN_NAMES = ("IMAGE","MASK","MASK_PREVIEW","SWAPPED_FACE") | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self, image, swapped_image, bbox_model_name, bbox_threshold, bbox_dilation, bbox_crop_factor, bbox_drop_size, sam_model_name, sam_dilation, sam_threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative, morphology_operation, morphology_distance, blur_radius, sigma_factor, mask_optional=None): | |
# images = [image[i:i + 1, ...] for i in range(image.shape[0])] | |
images = image | |
if mask_optional is None: | |
bbox_model_path = folder_paths.get_full_path("ultralytics", bbox_model_name) | |
bbox_model = subcore.load_yolo(bbox_model_path) | |
bbox_detector = subcore.UltraBBoxDetector(bbox_model) | |
segs = bbox_detector.detect(images, bbox_threshold, bbox_dilation, bbox_crop_factor, bbox_drop_size, self.detailer_hook) | |
if isinstance(self.labels, list): | |
self.labels = str(self.labels[0]) | |
if self.labels is not None and self.labels != '': | |
self.labels = self.labels.split(',') | |
if len(self.labels) > 0: | |
segs, _ = masking_segs.filter(segs, self.labels) | |
# segs, _ = masking_segs.filter(segs, "all") | |
sam_modelname = folder_paths.get_full_path("sams", sam_model_name) | |
if 'vit_h' in sam_model_name: | |
model_kind = 'vit_h' | |
elif 'vit_l' in sam_model_name: | |
model_kind = 'vit_l' | |
else: | |
model_kind = 'vit_b' | |
sam = sam_model_registry[model_kind](checkpoint=sam_modelname) | |
size = os.path.getsize(sam_modelname) | |
sam.safe_to = core.SafeToGPU(size) | |
device = model_management.get_torch_device() | |
sam.safe_to.to_device(sam, device) | |
sam.is_auto_mode = self.device_mode == "AUTO" | |
combined_mask, _ = core.make_sam_mask_segmented(sam, segs, images, self.detection_hint, sam_dilation, sam_threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative) | |
else: | |
combined_mask = mask_optional | |
# *** MASK TO IMAGE ***: | |
mask_image = combined_mask.reshape((-1, 1, combined_mask.shape[-2], combined_mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) | |
# *** MASK MORPH ***: | |
mask_image = core.tensor2mask(mask_image) | |
if morphology_operation == "dilate": | |
mask_image = self.dilate(mask_image, morphology_distance) | |
elif morphology_operation == "erode": | |
mask_image = self.erode(mask_image, morphology_distance) | |
elif morphology_operation == "open": | |
mask_image = self.erode(mask_image, morphology_distance) | |
mask_image = self.dilate(mask_image, morphology_distance) | |
elif morphology_operation == "close": | |
mask_image = self.dilate(mask_image, morphology_distance) | |
mask_image = self.erode(mask_image, morphology_distance) | |
# *** MASK BLUR ***: | |
if len(mask_image.size()) == 3: | |
mask_image = mask_image.unsqueeze(3) | |
mask_image = mask_image.permute(0, 3, 1, 2) | |
kernel_size = blur_radius * 2 + 1 | |
sigma = sigma_factor * (0.6 * blur_radius - 0.3) | |
mask_image_final = self.gaussian_blur(mask_image, kernel_size, sigma).permute(0, 2, 3, 1) | |
if mask_image_final.size()[3] == 1: | |
mask_image_final = mask_image_final[:, :, :, 0] | |
# *** CUT BY MASK ***: | |
if len(swapped_image.shape) < 4: | |
C = 1 | |
else: | |
C = swapped_image.shape[3] | |
# We operate on RGBA to keep the code clean and then convert back after | |
swapped_image = core.tensor2rgba(swapped_image) | |
mask = core.tensor2mask(mask_image_final) | |
# Scale the mask to be a matching size if it isn't | |
B, H, W, _ = swapped_image.shape | |
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:] | |
MB, _, _ = mask.shape | |
if MB < B: | |
assert(B % MB == 0) | |
mask = mask.repeat(B // MB, 1, 1) | |
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end | |
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, H * W]), dim=1).values, 0.) | |
mask[is_empty,0,0] = 1. | |
boxes = masks_to_boxes(mask) | |
mask[is_empty,0,0] = 0. | |
min_x = boxes[:,0] | |
min_y = boxes[:,1] | |
max_x = boxes[:,2] | |
max_y = boxes[:,3] | |
width = max_x - min_x + 1 | |
height = max_y - min_y + 1 | |
use_width = int(torch.max(width).item()) | |
use_height = int(torch.max(height).item()) | |
# if self.force_resize_width > 0: | |
# use_width = self.force_resize_width | |
# if self.force_resize_height > 0: | |
# use_height = self.force_resize_height | |
alpha_mask = torch.ones((B, H, W, 4)) | |
alpha_mask[:,:,:,3] = mask | |
swapped_image = swapped_image * alpha_mask | |
cutted_image = torch.zeros((B, use_height, use_width, 4)) | |
for i in range(0, B): | |
if not is_empty[i]: | |
ymin = int(min_y[i].item()) | |
ymax = int(max_y[i].item()) | |
xmin = int(min_x[i].item()) | |
xmax = int(max_x[i].item()) | |
single = (swapped_image[i, ymin:ymax+1, xmin:xmax+1,:]).unsqueeze(0) | |
resized = torch.nn.functional.interpolate(single.permute(0, 3, 1, 2), size=(use_height, use_width), mode='bicubic').permute(0, 2, 3, 1) | |
cutted_image[i] = resized[0] | |
# Preserve our type unless we were previously RGB and added non-opaque alpha due to the mask size | |
if C == 1: | |
cutted_image = core.tensor2mask(cutted_image) | |
elif C == 3 and torch.min(cutted_image[:,:,:,3]) == 1: | |
cutted_image = core.tensor2rgb(cutted_image) | |
# *** PASTE BY MASK ***: | |
image_base = core.tensor2rgba(images) | |
image_to_paste = core.tensor2rgba(cutted_image) | |
mask = core.tensor2mask(mask_image_final) | |
# Scale the mask to be a matching size if it isn't | |
B, H, W, C = image_base.shape | |
MB = mask.shape[0] | |
PB = image_to_paste.shape[0] | |
if B < PB: | |
assert(PB % B == 0) | |
image_base = image_base.repeat(PB // B, 1, 1, 1) | |
B, H, W, C = image_base.shape | |
if MB < B: | |
assert(B % MB == 0) | |
mask = mask.repeat(B // MB, 1, 1) | |
elif B < MB: | |
assert(MB % B == 0) | |
image_base = image_base.repeat(MB // B, 1, 1, 1) | |
if PB < B: | |
assert(B % PB == 0) | |
image_to_paste = image_to_paste.repeat(B // PB, 1, 1, 1) | |
mask = torch.nn.functional.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest')[:,0,:,:] | |
MB, MH, MW = mask.shape | |
# masks_to_boxes errors if the tensor is all zeros, so we'll add a single pixel and zero it out at the end | |
is_empty = ~torch.gt(torch.max(torch.reshape(mask,[MB, MH * MW]), dim=1).values, 0.) | |
mask[is_empty,0,0] = 1. | |
boxes = masks_to_boxes(mask) | |
mask[is_empty,0,0] = 0. | |
min_x = boxes[:,0] | |
min_y = boxes[:,1] | |
max_x = boxes[:,2] | |
max_y = boxes[:,3] | |
mid_x = (min_x + max_x) / 2 | |
mid_y = (min_y + max_y) / 2 | |
target_width = max_x - min_x + 1 | |
target_height = max_y - min_y + 1 | |
result = image_base.detach().clone() | |
face_segment = mask_image_final | |
for i in range(0, MB): | |
if is_empty[i]: | |
continue | |
else: | |
image_index = i | |
source_size = image_to_paste.size() | |
SB, SH, SW, _ = image_to_paste.shape | |
# Figure out the desired size | |
width = int(target_width[i].item()) | |
height = int(target_height[i].item()) | |
# if self.resize_behavior == "keep_ratio_fill": | |
# target_ratio = width / height | |
# actual_ratio = SW / SH | |
# if actual_ratio > target_ratio: | |
# width = int(height * actual_ratio) | |
# elif actual_ratio < target_ratio: | |
# height = int(width / actual_ratio) | |
# elif self.resize_behavior == "keep_ratio_fit": | |
# target_ratio = width / height | |
# actual_ratio = SW / SH | |
# if actual_ratio > target_ratio: | |
# height = int(width / actual_ratio) | |
# elif actual_ratio < target_ratio: | |
# width = int(height * actual_ratio) | |
# elif self.resize_behavior == "source_size" or self.resize_behavior == "source_size_unmasked": | |
width = SW | |
height = SH | |
# Resize the image we're pasting if needed | |
resized_image = image_to_paste[i].unsqueeze(0) | |
# if SH != height or SW != width: | |
# resized_image = torch.nn.functional.interpolate(resized_image.permute(0, 3, 1, 2), size=(height,width), mode='bicubic').permute(0, 2, 3, 1) | |
pasting = torch.ones([H, W, C]) | |
ymid = float(mid_y[i].item()) | |
ymin = int(math.floor(ymid - height / 2)) + 1 | |
ymax = int(math.floor(ymid + height / 2)) + 1 | |
xmid = float(mid_x[i].item()) | |
xmin = int(math.floor(xmid - width / 2)) + 1 | |
xmax = int(math.floor(xmid + width / 2)) + 1 | |
_, source_ymax, source_xmax, _ = resized_image.shape | |
source_ymin, source_xmin = 0, 0 | |
if xmin < 0: | |
source_xmin = abs(xmin) | |
xmin = 0 | |
if ymin < 0: | |
source_ymin = abs(ymin) | |
ymin = 0 | |
if xmax > W: | |
source_xmax -= (xmax - W) | |
xmax = W | |
if ymax > H: | |
source_ymax -= (ymax - H) | |
ymax = H | |
pasting[ymin:ymax, xmin:xmax, :] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, :] | |
pasting[:, :, 3] = 1. | |
pasting_alpha = torch.zeros([H, W]) | |
pasting_alpha[ymin:ymax, xmin:xmax] = resized_image[0, source_ymin:source_ymax, source_xmin:source_xmax, 3] | |
# if self.resize_behavior == "keep_ratio_fill" or self.resize_behavior == "source_size_unmasked": | |
# # If we explicitly want to fill the area, we are ok with extending outside | |
# paste_mask = pasting_alpha.unsqueeze(2).repeat(1, 1, 4) | |
# else: | |
# paste_mask = torch.min(pasting_alpha, mask[i]).unsqueeze(2).repeat(1, 1, 4) | |
paste_mask = torch.min(pasting_alpha, mask[i]).unsqueeze(2).repeat(1, 1, 4) | |
result[image_index] = pasting * paste_mask + result[image_index] * (1. - paste_mask) | |
face_segment = result | |
face_segment[...,3] = mask[i] | |
result = rgba2rgb_tensor(result) | |
return (result,combined_mask,mask_image_final,face_segment,) | |
def gaussian_blur(self, image, kernel_size, sigma): | |
kernel = torch.Tensor(kernel_size, kernel_size).to(device=image.device) | |
center = kernel_size // 2 | |
variance = sigma**2 | |
for i in range(kernel_size): | |
for j in range(kernel_size): | |
x = i - center | |
y = j - center | |
kernel[i, j] = math.exp(-(x**2 + y**2)/(2*variance)) | |
kernel /= kernel.sum() | |
# Pad the input tensor | |
padding = (kernel_size - 1) // 2 | |
input_pad = torch.nn.functional.pad(image, (padding, padding, padding, padding), mode='reflect') | |
# Reshape the padded input tensor for batched convolution | |
batch_size, num_channels, height, width = image.shape | |
input_reshaped = input_pad.reshape(batch_size*num_channels, 1, height+padding*2, width+padding*2) | |
# Perform batched convolution with the Gaussian kernel | |
output_reshaped = torch.nn.functional.conv2d(input_reshaped, kernel.unsqueeze(0).unsqueeze(0)) | |
# Reshape the output tensor to its original shape | |
output_tensor = output_reshaped.reshape(batch_size, num_channels, height, width) | |
return output_tensor | |
def erode(self, image, distance): | |
return 1. - self.dilate(1. - image, distance) | |
def dilate(self, image, distance): | |
kernel_size = 1 + distance * 2 | |
# Add the channels dimension | |
image = image.unsqueeze(1) | |
out = torchfn.max_pool2d(image, kernel_size=kernel_size, stride=1, padding=kernel_size // 2).squeeze(1) | |
return out | |
class ImageDublicator: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"count": ("INT", {"default": 1, "min": 0}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
RETURN_NAMES = ("IMAGES",) | |
OUTPUT_IS_LIST = (True,) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self, image, count): | |
images = [image for i in range(count)] | |
return (images,) | |
class ImageRGBA2RGB: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self, image): | |
out = rgba2rgb_tensor(image) | |
return (out,) | |
class MakeFaceModelBatch: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"face_model1": ("FACE_MODEL",), | |
}, | |
"optional": { | |
"face_model2": ("FACE_MODEL",), | |
"face_model3": ("FACE_MODEL",), | |
"face_model4": ("FACE_MODEL",), | |
"face_model5": ("FACE_MODEL",), | |
"face_model6": ("FACE_MODEL",), | |
"face_model7": ("FACE_MODEL",), | |
"face_model8": ("FACE_MODEL",), | |
"face_model9": ("FACE_MODEL",), | |
"face_model10": ("FACE_MODEL",), | |
}, | |
} | |
RETURN_TYPES = ("FACE_MODEL",) | |
RETURN_NAMES = ("FACE_MODELS",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self, **kwargs): | |
if len(kwargs) > 0: | |
face_models = [value for value in kwargs.values()] | |
return (face_models,) | |
else: | |
logger.error("Please provide at least 1 `face_model`") | |
return (None,) | |
class ReActorOptions: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"input_faces_order": ( | |
["left-right","right-left","top-bottom","bottom-top","small-large","large-small"], {"default": "large-small"} | |
), | |
"input_faces_index": ("STRING", {"default": "0"}), | |
"detect_gender_input": (["no","female","male"], {"default": "no"}), | |
"source_faces_order": ( | |
["left-right","right-left","top-bottom","bottom-top","small-large","large-small"], {"default": "large-small"} | |
), | |
"source_faces_index": ("STRING", {"default": "0"}), | |
"detect_gender_source": (["no","female","male"], {"default": "no"}), | |
"console_log_level": ([0, 1, 2], {"default": 1}), | |
} | |
} | |
RETURN_TYPES = ("OPTIONS",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self,input_faces_order, input_faces_index, detect_gender_input, source_faces_order, source_faces_index, detect_gender_source, console_log_level): | |
options: dict = { | |
"input_faces_order": input_faces_order, | |
"input_faces_index": input_faces_index, | |
"detect_gender_input": detect_gender_input, | |
"source_faces_order": source_faces_order, | |
"source_faces_index": source_faces_index, | |
"detect_gender_source": detect_gender_source, | |
"console_log_level": console_log_level, | |
} | |
return (options, ) | |
class ReActorFaceBoost: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"enabled": ("BOOLEAN", {"default": True, "label_off": "OFF", "label_on": "ON"}), | |
"boost_model": (get_model_names(get_restorers),), | |
"interpolation": (["Nearest","Bilinear","Bicubic","Lanczos"], {"default": "Bicubic"}), | |
"visibility": ("FLOAT", {"default": 1, "min": 0.1, "max": 1, "step": 0.05}), | |
"codeformer_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1, "step": 0.05}), | |
"restore_with_main_after": ("BOOLEAN", {"default": False}), | |
} | |
} | |
RETURN_TYPES = ("FACE_BOOST",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self,enabled,boost_model,interpolation,visibility,codeformer_weight,restore_with_main_after): | |
face_boost: dict = { | |
"enabled": enabled, | |
"boost_model": boost_model, | |
"interpolation": interpolation, | |
"visibility": visibility, | |
"codeformer_weight": codeformer_weight, | |
"restore_with_main_after": restore_with_main_after, | |
} | |
return (face_boost, ) | |
class ReActorUnload: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"trigger": ("IMAGE", ), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "execute" | |
CATEGORY = "π ReActor" | |
def execute(self, trigger): | |
unload_all_models() | |
return (trigger,) | |
NODE_CLASS_MAPPINGS = { | |
# --- MAIN NODES --- | |
"ReActorFaceSwap": reactor, | |
"ReActorFaceSwapOpt": ReActorPlusOpt, | |
"ReActorOptions": ReActorOptions, | |
"ReActorFaceBoost": ReActorFaceBoost, | |
"ReActorMaskHelper": MaskHelper, | |
# --- Operations with Face Models --- | |
"ReActorSaveFaceModel": SaveFaceModel, | |
"ReActorLoadFaceModel": LoadFaceModel, | |
"ReActorBuildFaceModel": BuildFaceModel, | |
"ReActorMakeFaceModelBatch": MakeFaceModelBatch, | |
# --- Additional Nodes --- | |
"ReActorRestoreFace": RestoreFace, | |
"ReActorImageDublicator": ImageDublicator, | |
"ImageRGBA2RGB": ImageRGBA2RGB, | |
"ReActorUnload": ReActorUnload, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
# --- MAIN NODES --- | |
"ReActorFaceSwap": "ReActor π Fast Face Swap", | |
"ReActorFaceSwapOpt": "ReActor π Fast Face Swap [OPTIONS]", | |
"ReActorOptions": "ReActor π Options", | |
"ReActorFaceBoost": "ReActor π Face Booster", | |
"ReActorMaskHelper": "ReActor π Masking Helper", | |
# --- Operations with Face Models --- | |
"ReActorSaveFaceModel": "Save Face Model π ReActor", | |
"ReActorLoadFaceModel": "Load Face Model π ReActor", | |
"ReActorBuildFaceModel": "Build Blended Face Model π ReActor", | |
"ReActorMakeFaceModelBatch": "Make Face Model Batch π ReActor", | |
# --- Additional Nodes --- | |
"ReActorRestoreFace": "Restore Face π ReActor", | |
"ReActorImageDublicator": "Image Dublicator (List) π ReActor", | |
"ImageRGBA2RGB": "Convert RGBA to RGB π ReActor", | |
"ReActorUnload": "Unload ReActor Models π ReActor", | |
} | |