Spaces:
Sleeping
Sleeping
File size: 4,595 Bytes
9b5b26a c19d193 6aae614 9a97e3e 8fe992b 9b5b26a 741fdb4 321f9ea 741fdb4 45236a5 4bcc31b 45236a5 4bcc31b 45236a5 2dfb143 45236a5 9b5b26a 45236a5 8fe992b d81ee83 9b5b26a d81ee83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import random
from Gradio_UI import GradioUI
import os
from huggingface_hub import InferenceClient
HF_API_KEY = os.getenv("HF_API_KEY")
if not HF_API_KEY:
raise ValueError("HF_API_KEY is not set. Please add it as a secret in your Hugging Face Space settings.")
client = InferenceClient(token=HF_API_KEY)
response = client.text_generation("Hello!", model="Qwen/Qwen2.5-Coder-32B-Instruct")
print(response)
# @tool
# def futuristic_profession_predictor(name: str) -> str:
# """Predicts the person's profession in the year 2050 based on their name.
# Args:
# name: The name of the person.
# """
# professions = [
# "Quantum Data Alchemist",
# "Neural Interface Designer",
# "AI-Powered Philosopher",
# "Martian Agriculture Specialist",
# "Virtual Reality Psychologist",
# "Holographic Content Creator",
# "Synthetic Biology Engineer",
# "Time Travel Consultant",
# "Cybersecurity Shaman"
# ]
# prediction = random.choice(professions)
# return f"In the year 2050, {name} will be a {prediction}!"
# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
# #Keep this format for the description / args / args description but feel free to modify the tool
# """A tool that does nothing yet
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return "What magic will you build ?"
# @tool
# def findLoveOfTwoNumbers(arg1:int, arg2:int)-> int:
# """ A tool that returns Love of two numbers
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return arg1+arg2 - 20
# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def personIdentifier(arg1:str)-> int: #it's important to specify the return type
# #Keep this format for the description / args / args description but feel free to modify the tool
# """A Tool that identifies the person. For example,
# Task: Who is Ajit Kumar?
# Answer: He is a professor at Shiv Nadar University.
# Args:
# arg1: the first argument
# """
# return "He is a professor at Shiv Nadar University"
# @tool
# def get_current_time_in_timezone(timezone: str) -> str:
# """A tool that fetches the current local time in a specified timezone.
# Args:
# timezone: A string representing a valid timezone (e.g., 'America/New_York').
# """
# try:
# # Create timezone object
# tz = pytz.timezone(timezone)
# # Get current time in that timezone
# local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
# return f"The current local time in {timezone} is: {local_time}"
# except Exception as e:
# return f"Error fetching time for timezone '{timezone}': {str(e)}"
# final_answer = FinalAnswerTool()
# # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )
# # Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
# with open("prompts.yaml", 'r') as stream:
# prompt_templates = yaml.safe_load(stream)
# agent = CodeAgent(
# model=model,
# #tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool()], ## add your tools here (don't remove final answer)
# tools = [final_answer, futuristic_profession_predictor, personIdentifier, findLoveOfTwoNumbers],
# max_steps=20,
# verbosity_level=1,
# grammar=None,
# planning_interval=None,
# name=None,
# description=None,
# prompt_templates=prompt_templates
# )
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
agent2 = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())
#agent.run("Search for the best music recommendations for a party at the Wayne's mansion.")
GradioUI(agent2).launch() |