File size: 4,595 Bytes
9b5b26a
 
 
 
c19d193
6aae614
9a97e3e
8fe992b
9b5b26a
 
741fdb4
 
 
 
321f9ea
 
 
 
741fdb4
 
 
 
45236a5
 
 
4bcc31b
45236a5
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcc31b
45236a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dfb143
45236a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
45236a5
 
 
 
 
 
 
 
 
 
 
 
8fe992b
d81ee83
9b5b26a
d81ee83
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import random

from Gradio_UI import GradioUI

import os
from huggingface_hub import InferenceClient

HF_API_KEY = os.getenv("HF_API_KEY")
if not HF_API_KEY:
    raise ValueError("HF_API_KEY is not set. Please add it as a secret in your Hugging Face Space settings.")

client = InferenceClient(token=HF_API_KEY)

response = client.text_generation("Hello!", model="Qwen/Qwen2.5-Coder-32B-Instruct")
print(response)

# @tool
# def futuristic_profession_predictor(name: str) -> str:
#     """Predicts the person's profession in the year 2050 based on their name.
    
#     Args:
#         name: The name of the person.
#     """
#     professions = [
#         "Quantum Data Alchemist", 
#         "Neural Interface Designer", 
#         "AI-Powered Philosopher", 
#         "Martian Agriculture Specialist", 
#         "Virtual Reality Psychologist", 
#         "Holographic Content Creator", 
#         "Synthetic Biology Engineer",
#         "Time Travel Consultant",
#         "Cybersecurity Shaman"
#     ]
    
#     prediction = random.choice(professions)
#     return f"In the year 2050, {name} will be a {prediction}!"

# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#     #Keep this format for the description / args / args description but feel free to modify the tool
#     """A tool that does nothing yet 
#     Args:
#         arg1: the first argument
#         arg2: the second argument
#     """
#     return "What magic will you build ?"


# @tool
# def findLoveOfTwoNumbers(arg1:int, arg2:int)-> int:
#     """ A tool that returns Love of two numbers
#     Args:
#         arg1: the first argument
#         arg2: the second argument    
#     """
#     return arg1+arg2 - 20

# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def personIdentifier(arg1:str)-> int: #it's important to specify the return type
#     #Keep this format for the description / args / args description but feel free to modify the tool
#     """A Tool that identifies the person. For example, 
#     Task: Who is Ajit Kumar?
#     Answer: He is a professor at Shiv Nadar University.
    
#     Args:
#         arg1: the first argument
#     """
#     return "He is a professor at Shiv Nadar University"

# @tool
# def get_current_time_in_timezone(timezone: str) -> str:
#     """A tool that fetches the current local time in a specified timezone.
#     Args:
#         timezone: A string representing a valid timezone (e.g., 'America/New_York').
#     """
#     try:
#         # Create timezone object
#         tz = pytz.timezone(timezone)
#         # Get current time in that timezone
#         local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
#         return f"The current local time in {timezone} is: {local_time}"
#     except Exception as e:
#         return f"Error fetching time for timezone '{timezone}': {str(e)}"


# final_answer = FinalAnswerTool()

# # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )


# # Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

# with open("prompts.yaml", 'r') as stream:
#     prompt_templates = yaml.safe_load(stream)
    
# agent = CodeAgent(
#     model=model,
#     #tools=[final_answer, image_generation_tool, DuckDuckGoSearchTool()], ## add your tools here (don't remove final answer)
#     tools = [final_answer, futuristic_profession_predictor, personIdentifier, findLoveOfTwoNumbers],
#     max_steps=20,
#     verbosity_level=1,
#     grammar=None,
#     planning_interval=None,
#     name=None,
#     description=None,
#     prompt_templates=prompt_templates
# )

from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel

agent2 = CodeAgent(tools=[DuckDuckGoSearchTool()], model=HfApiModel())

#agent.run("Search for the best music recommendations for a party at the Wayne's mansion.")


GradioUI(agent2).launch()