File size: 12,906 Bytes
d154d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a56525
d154d66
 
 
 
 
 
4a56525
d154d66
4a56525
d154d66
 
4a56525
d154d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a56525
 
d154d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a56525
 
d154d66
 
 
 
 
 
 
 
 
4a56525
d154d66
4a56525
d154d66
 
 
4a56525
d154d66
 
 
4a56525
d154d66
 
 
 
 
4a56525
d154d66
 
 
4a56525
d154d66
 
 
4a56525
d154d66
 
 
4a56525
 
 
d154d66
 
 
 
 
 
 
4a56525
d154d66
 
 
 
4a56525
d154d66
 
4a56525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d154d66
 
 
 
4a56525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d154d66
 
 
 
 
 
4a56525
 
d154d66
 
 
 
 
 
 
 
 
4a56525
08984d9
4a56525
d154d66
 
 
4a56525
 
d154d66
 
 
 
 
4a56525
d154d66
4a56525
 
d154d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a56525
 
 
 
d154d66
739fa69
 
 
4a56525
d154d66
 
 
 
 
 
 
 
 
 
 
4a56525
 
 
d154d66
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import time
import streamlit as st
import torch
import string
from annotated_text import annotated_text

from flair.data import Sentence
from flair.models import SequenceTagger
from transformers import BertTokenizer, BertForMaskedLM
import BatchInference as bd
import batched_main_NER as ner
import aggregate_server_json as aggr
import json


DEFAULT_TOP_K = 20
SPECIFIC_TAG=":__entity__"


@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def POS_get_model(model_name):
  val = SequenceTagger.load(model_name) # Load the model
  return val

def getPos(s: Sentence):
  texts = []
  labels = []
  for t in s.tokens:
    for label in t.annotation_layers.keys():
      texts.append(t.text)
      labels.append(t.get_labels(label)[0].value)
  return texts, labels

def getDictFromPOS(texts, labels):
  return [["dummy",t,l,"dummy","dummy" ] for t, l in zip(texts, labels)]

def decode(tokenizer, pred_idx, top_clean):
  ignore_tokens = string.punctuation + '[PAD]'
  tokens = []
  for w in pred_idx:
    token = ''.join(tokenizer.decode(w).split())
    if token not in ignore_tokens:
      tokens.append(token.replace('##', ''))
  return '\n'.join(tokens[:top_clean])

def encode(tokenizer, text_sentence, add_special_tokens=True):
  text_sentence = text_sentence.replace('<mask>', tokenizer.mask_token)
    # if <mask> is the last token, append a "." so that models dont predict punctuation.
  if tokenizer.mask_token == text_sentence.split()[-1]:
    text_sentence += ' .'

    input_ids = torch.tensor([tokenizer.encode(text_sentence, add_special_tokens=add_special_tokens)])
    mask_idx = torch.where(input_ids == tokenizer.mask_token_id)[1].tolist()[0]
  return input_ids, mask_idx

def get_all_predictions(text_sentence, top_clean=5):
    # ========================= BERT =================================
  input_ids, mask_idx = encode(bert_tokenizer, text_sentence)
  with torch.no_grad():
    predict = bert_model(input_ids)[0]
  bert = decode(bert_tokenizer, predict[0, mask_idx, :].topk(top_k).indices.tolist(), top_clean)
  return {'bert': bert}

def get_bert_prediction(input_text,top_k):
  try:
    input_text += ' <mask>'
    res = get_all_predictions(input_text, top_clean=int(top_k))
    return res
  except Exception as error:
    pass


def load_pos_model():
  checkpoint = "flair/pos-english"
  return  POS_get_model(checkpoint)




def init_session_states():
  if 'top_k' not in st.session_state:
    st.session_state['top_k'] = 20
  if 'pos_model' not in st.session_state:
    st.session_state['pos_model'] = None
  if 'bio_model' not in st.session_state:
    st.session_state['bio_model'] = None
  if 'phi_model' not in st.session_state:
    st.session_state['phi_model'] = None
  if 'ner_bio' not in st.session_state:
    st.session_state['ner_bio'] = None
  if 'ner_phi' not in st.session_state:
    st.session_state['ner_phi'] = None
  if 'aggr' not in st.session_state:
    st.session_state['aggr'] = None



def get_pos_arr(input_text,display_area):
   if (st.session_state['pos_model'] is None):
     display_area.text("Loading model 3 of 3.Loading POS model...")
     st.session_state['pos_model'] = load_pos_model()
   s = Sentence(input_text)
   st.session_state['pos_model'].predict(s)
   texts, labels = getPos(s)
   pos_results = getDictFromPOS(texts, labels)
   return pos_results

def perform_inference(text,display_area):

  if (st.session_state['bio_model'] is None):
    display_area.text("Loading model 1 of 3. Bio model...")
    st.session_state['bio_model'] = bd.BatchInference("bio/desc_a100_config.json",'ajitrajasekharan/biomedical',False,False,DEFAULT_TOP_K,True,True,       "bio/","bio/a100_labels.txt",False)

  if (st.session_state['phi_model'] is None):
    display_area.text("Loading model 2 of 3. PHI model...")
    st.session_state['phi_model'] = bd.BatchInference("bbc/desc_bbc_config.json",'bert-base-cased',False,False,DEFAULT_TOP_K,True,True,       "bbc/","bbc/bbc_labels.txt",False)

  #Load POS model if needed and gets POS tags
  if (SPECIFIC_TAG not in text):
    pos_arr = get_pos_arr(text,display_area)
  else:
    pos_arr = None

  if (st.session_state['ner_bio'] is None):
    display_area.text("Initializing BIO module...")
    st.session_state['ner_bio'] = ner.UnsupNER("bio/ner_a100_config.json")

  if (st.session_state['ner_phi'] is None):
    display_area.text("Initializing PHI module...")
    st.session_state['ner_phi'] = ner.UnsupNER("bbc/ner_bbc_config.json")

  if (st.session_state['aggr'] is None):
    display_area.text("Initializing Aggregation modeule...")
    st.session_state['aggr'] = aggr.AggregateNER("./ensemble_config.json")



  display_area.text("Getting results from BIO model...")
  bio_descs = st.session_state['bio_model'].get_descriptors(text,pos_arr)
  display_area.text("Getting results from PHI model...")
  phi_results = st.session_state['phi_model'].get_descriptors(text,pos_arr)
  display_area.text("Aggregating BIO & PHI results...")
  bio_ner = st.session_state['ner_bio'].tag_sentence_service(text,bio_descs)
  phi_ner = st.session_state['ner_phi'].tag_sentence_service(text,phi_results)

  combined_arr = [json.loads(bio_ner),json.loads(phi_ner)]

  aggregate_results = st.session_state['aggr'].fetch_all(text,combined_arr)
  return aggregate_results


sent_arr = [
"Lou Gehrig who works for XCorp and lives in New York suffers from Parkinson's ",
"Parkinson who works for XCorp and lives in New York suffers from Lou Gehrig's",
"lou gehrig was diagnosed with Parkinson's ",
"A eGFR below 60 indicates chronic kidney disease",
"Overexpression of EGFR occurs across a wide range of different cancers",
"Stanford called",
"He was diagnosed with non small cell lung cancer",
"I met my girl friends at the pub ",
"I met my New York friends at the pub",
"I met my XCorp friends at the pub",
"I met my two friends at the pub",
"Bio-Techne's genomic tools include advanced tissue-based in-situ hybridization assays sold under the ACD brand as well as a portfolio of     assays for prostate cancer diagnosis ",
"There are no treatment options specifically indicated for ACD and physicians must utilize agents approved for other dermatology conditions", "As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs  ",
"Located in the heart of Dublin , in the family home of acclaimed writer Oscar Wilde , ACD provides the perfect backdrop to inspire Irish     (and Irish-at-heart) students to excel in business and the arts",
"Patients treated with anticancer chemotherapy drugs ( ACD ) are vulnerable to infectious diseases due to immunosuppression and to the direct impact of ACD on their intestinal microbiota ",
"In the LASOR trial , increasing daily imatinib dose from 400 to 600mg induced MMR at 12 and 24 months in 25% and 36% of the patients,        respectively, who had suboptimal cytogenetic responses ",
"The sky turned dark in advance of the storm that was coming from the east ",
"She loves to watch Sunday afternoon football with her family ",
"Paul Erdos died at 83 "
]


sent_arr_masked = [
"Lou Gehrig:__entity__ who works for XCorp:__entity__ and lives in New:__entity__ York:__entity__ suffers from Parkinson's:__entity__ ",
"Parkinson:__entity__ who works for XCorp:__entity__ and lives in New:__entity__ York:__entity__ suffers from Lou Gehrig's:__entity__",
"lou:__entity__ gehrig:__entity__ was diagnosed with Parkinson's:__entity__ ",
"A eGFR:__entity__ below 60 indicates chronic kidney disease",
"Overexpression of EGFR:__entity__ occurs across a wide range of different cancers",
"Stanford:__entity__ called",
"He was diagnosed with non:__entity__ small:__entity__ cell:__entity__ lung:__entity__ cancer:__entity__",
"I met my girl:__entity__ friends at the pub ",
"I met my New:__entity__ York:__entity__ friends at the pub",
"I met my XCorp:__entity__ friends at the pub",
"I met my two:__entity__ friends at the pub",
"Bio-Techne's genomic tools include advanced tissue-based in-situ hybridization assays sold under the ACD:__entity__ brand as well as a portfolio of     assays for prostate cancer diagnosis ",
"There are no treatment options specifically indicated for ACD:__entity__ and physicians must utilize agents approved for other dermatology conditions",
"As ACD:__entity__ has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs  ",
"Located in the heart of Dublin , in the family home of acclaimed writer Oscar Wilde , ACD:__entity__ provides the perfect backdrop to inspire Irish     (and Irish-at-heart) students to excel in business and the arts",
"Patients treated with anticancer chemotherapy drugs ( ACD:__entity__ ) are vulnerable to infectious diseases due to immunosuppression and to the direct impact of ACD on their intestinal microbiota ",
"In the LASOR:__entity__ trial:__entity__ , increasing daily imatinib dose from 400 to 600mg induced MMR at 12 and 24 months in 25% and 36% of the patients,        respectively, who had suboptimal cytogenetic responses ",
"The sky turned dark:__entity__ in advance of the storm that was coming from the east ",
"She loves to watch Sunday afternoon football:__entity__ with her family ",
"Paul:__entity__ Erdos:__entity__ died at 83:__entity__ "
]

def init_selectbox():
  return st.selectbox(
     'Choose any of the sentences in pull-down below',
     sent_arr,key='my_choice')


def on_text_change():
  text = st.session_state.my_text
  print("in callback: " + text)
  perform_inference(text)

def main():
  try:

    init_session_states()

    st.markdown("<h3 style='text-align: center;'>Biomedical and PHI NER ensemble</h3>", unsafe_allow_html=True)
    st.markdown("<h4 style='text-align: center;'>Using pretrained models with <a href='https://ajitrajasekharan.github.io/2021/01/02/my-first-post.html'>no fine tuning</a></h4>", unsafe_allow_html=True)
    #st.markdown("""
    #<h3 style="font-size:16px; color: #ff0000; text-align: center"><b>App under construction... (not in working condition yet)</b></h3>
  #""", unsafe_allow_html=True)


    st.markdown("""
    <p style="text-align:center;"><img src="https://ajitrajasekharan.github.io/images/1.png" width="700"></p>
    <br/>
    <br/>
  """, unsafe_allow_html=True)

    st.write("This app uses 3 models.  Two Pretrained Bert models (**no fine tuning**) and a POS tagger")


    with st.form('my_form'):
      selected_sentence = init_selectbox()
      text_input = st.text_area(label='Type any sentence below',value="")
      submit_button = st.form_submit_button('Submit')
      input_status_area = st.empty()
      display_area = st.empty()
      if 	submit_button:
            start = time.time()
            if (len(text_input) == 0):
              text_input = sent_arr_masked[sent_arr.index(selected_sentence)]
            input_status_area.text("Input sentence:  " + text_input)
            results = perform_inference(text_input,display_area)
            display_area.empty()
            with display_area.container():
              st.text(f"prediction took {time.time() - start:.2f}s")
              st.json(results)





     st.markdown("""
    <small style="font-size:16px; color: #8f8f8f; text-align: left"><i><b>Note:</b> The example sentences in the pull-down above  test biomedical & PHI entities.  To see valid predictions specifically for biomedical entities  <a href='https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-biomedical'   target='_blank'>use this app</a>. For PHI entities only (Person,location, Organization) <a href='https://huggingface.co/spaces/ajitrajasekharan/self-supervised-ner-PER-ORG-LOC'   target='_blank'>use this app</a> </i></small>
  """, unsafe_allow_html=True)

    st.markdown("""
    <small style="font-size:16px; color: #7f7f7f; text-align: left"><br/><br/>Models used: <br/>(1) <a href='https://huggingface.co/ajitrajasekharan/biomedical' target='_blank'>Biomedical model</a> pretrained on Pubmed,Clinical trials and BookCorpus subset.<br/>(2) Bert-base-cased (for PHI entities - Person/location/organization etc.)<br/>(3) Flair POS tagger</small>
  #""", unsafe_allow_html=True)
    st.markdown("""
    <h3 style="font-size:16px; color: #9f9f9f; text-align: center"><b> <a href='https://huggingface.co/spaces/ajitrajasekharan/Qualitative-pretrained-model-evaluation'   target='_blank'>App link to examine pretrained models</a> used to perform NER without fine tuning</b></h3>
  """, unsafe_allow_html=True)
    st.markdown("""
    <h3 style="font-size:16px; color: #9f9f9f; text-align: center">Github <a href='http://github.com/ajitrajasekharan/unsupervised_NER' target='_blank'>link to same working code </a>(without UI) as separate microservices</h3>
  """, unsafe_allow_html=True)

  except Exception as e:
    print("Some error occurred in main")
    st.exception(e)

if __name__ == "__main__":
   main()