Spaces:
Runtime error
Runtime error
#!/usr/bin/python3 | |
import threading | |
import time | |
import math | |
import sys | |
import pdb | |
import requests | |
import urllib.parse | |
from common import * | |
import config_utils as cf | |
import json | |
from collections import OrderedDict | |
import argparse | |
import numpy as np | |
MASK = ":__entity__" | |
RESULT_MASK = "NER_FINAL_RESULTS:" | |
DEFAULT_CONFIG = "./ensemble_config.json" | |
DEFAULT_TEST_BATCH_FILE="bootstrap_test_set.txt" | |
NER_OUTPUT_FILE="ner_output.txt" | |
DEFAULT_THRESHOLD = 1 #1 standard deviation from nean - for cross over prediction | |
actions_arr = [] | |
class AggregateNER: | |
def __init__(self,config_file): | |
global actions_arr | |
base_path = cf.read_config(config_file)["BASE_PATH"] if ("BASE_PATH" in cf.read_config(config_file)) else "./" | |
self.error_fp = open(base_path + "failed_queries_log.txt","a") | |
self.rfp = open(base_path + "query_response_log.txt","a") | |
self.query_log_fp = open(base_path + "query_logs.txt","a") | |
self.inferred_entities_log_fp = open(base_path + "inferred_entities_log.txt","a") | |
self.threshold = DEFAULT_THRESHOLD #TBD read this from confg. cf.read_config()["CROSS_OVER_THRESHOLD_SIGMA"] | |
self.servers = cf.read_config(config_file)["NER_SERVERS"] | |
actions_arr = [ | |
{"url":cf.read_config(config_file)["actions_arr"][0]["url"],"desc":cf.read_config(config_file)["actions_arr"][0]["desc"], "precedence":cf.read_config(config_file)["bio_precedence_arr"],"common":cf.read_config(config_file)["common_entities_arr"]}, | |
{"url":cf.read_config(config_file)["actions_arr"][1]["url"],"desc":cf.read_config(config_file)["actions_arr"][1]["desc"],"precedence":cf.read_config(config_file)["phi_precedence_arr"],"common":cf.read_config(config_file)["common_entities_arr"]}, | |
] | |
def add_term_punct(self,sent): | |
if (len(sent) > 1): | |
end_tokens = "!,.:;?" | |
last_char = sent[-1] | |
if (last_char not in end_tokens): #End all sentences with a period if not already present in sentence. | |
sent = sent + ' . ' | |
print("End punctuated sent:",sent) | |
return sent | |
def fetch_all(self,inp,model_results_arr): | |
self.query_log_fp.write(inp+"\n") | |
self.query_log_fp.flush() | |
inp = self.add_term_punct(inp) | |
results = model_results_arr | |
#print(json.dumps(results,indent=4)) | |
#this updates results with ensembled results | |
results = self.ensemble_processing(inp,results) | |
return_stat = "Failed" if len(results["ensembled_ner"]) == 0 else "Success" | |
results["stats"] = { "Ensemble server count" : str(len(model_results_arr)), "return_status": return_stat} | |
self.rfp.write( "\n" + json.dumps(results,indent=4)) | |
self.rfp.flush() | |
return results | |
def get_conflict_resolved_entity(self,results,term_index,terms_count,servers_arr): | |
pos_index = str(term_index + 1) | |
s1_entity = extract_main_entity(results,0,pos_index) | |
s2_entity = extract_main_entity(results,1,pos_index) | |
span_count1 = get_span_info(results,0,term_index,terms_count) | |
span_count2 = get_span_info(results,1,term_index,terms_count) | |
if(span_count1 != span_count2): | |
print("Both input spans dont match. This is the effect of normalized casing that is model specific. Picking min span length") | |
span_count1 = span_count1 if span_count1 <= span_count2 else span_count2 | |
if (s1_entity == s2_entity): | |
server_index = 0 if (s1_entity in servers_arr[0]["precedence"]) else 1 | |
if (s1_entity != "O"): | |
print("Both servers agree on prediction for term:",results[0]["ner"][pos_index]["term"],":",s1_entity) | |
return server_index,span_count1,-1 | |
else: | |
print("Servers do not agree on prediction for term:",results[0]["ner"][pos_index]["term"],":",s1_entity,s2_entity) | |
if (s2_entity == "O"): | |
print("Server 2 returned O. Picking server 1") | |
return 0,span_count1,-1 | |
if (s1_entity == "O"): | |
print("Server 1 returned O. Picking server 2") | |
return 1,span_count2,-1 | |
#Both the servers dont agree on their predictions. First server is BIO server. Second is PHI | |
#Examine both server predictions. | |
#Case 1: If just one of them makes a single prediction, then just pick that - it indicates one model is confident while the other isnt. | |
#Else. | |
# If the top prediction of one of them is a cross prediction, then again drop that prediction and pick the server being cross predicted. | |
# Else. Return both predictions, but with the higher confidence prediction first | |
#Case 2: Both dont cross predict. Then just return both predictions with higher confidence prediction listed first | |
#Cross prediction is checked only for predictions a server makes ABOVE prediction mean. | |
picked_server_index,cross_prediction_count = self.pick_single_server_if_possible(results,term_index,servers_arr) | |
return picked_server_index,span_count1,cross_prediction_count | |
def pick_single_server_if_possible(self,results,term_index,servers_arr): | |
''' | |
Return param : index of picked server | |
''' | |
pos_index = str(term_index + 1) | |
predictions_dict = {} | |
orig_cs_predictions_dict = {} | |
single_prediction_count = 0 | |
single_prediction_server_index = -1 | |
for server_index in range(len(results)): | |
if (pos_index in results[server_index]["entity_distribution"]): | |
predictions = self.get_predictions_above_threshold(results[server_index]["entity_distribution"][pos_index]) | |
predictions_dict[server_index] = predictions #This is used below to only return top server prediction | |
orig_cs_predictions = self.get_predictions_above_threshold(results[server_index]["orig_cs_prediction_details"][pos_index]) | |
orig_cs_predictions_dict[server_index] = orig_cs_predictions #this is used below for cross prediction determination since it is just a CS prediction | |
#single_prediction_count += 1 if (len(orig_cs_predictions) == 1) else 0 | |
#if (len(orig_cs_predictions) == 1): | |
# single_prediction_server_index = server_index | |
if (single_prediction_count == 1): | |
is_included = is_included_in_server_entities(orig_cs_predictions_dict[single_prediction_server_index],servers_arr[single_prediction_server_index],False) | |
if(is_included == False) : | |
print("This is an odd case of single server prediction, that is a cross over") | |
ret_index = 0 if single_prediction_server_index == 1 else 1 | |
return ret_index,-1 | |
else: | |
print("Returning the index of single prediction server") | |
return single_prediction_server_index,-1 | |
elif (single_prediction_count == 2): | |
print("Both have single predictions") | |
cross_predictions = {} | |
cross_prediction_count = 0 | |
for server_index in range(len(results)): | |
if (pos_index in results[server_index]["entity_distribution"]): | |
is_included = is_included_in_server_entities(orig_cs_predictions_dict[server_index],servers_arr[server_index],False) | |
cross_predictions[server_index] = not is_included | |
cross_prediction_count += 1 if not is_included else 0 | |
if (cross_prediction_count == 2): | |
#this is an odd case of both cross predicting with high confidence. Not sure if we will ever come here. | |
print("*********** BOTH servers are cross predicting! ******") | |
return self.pick_top_server_prediction(predictions_dict),2 | |
elif (cross_prediction_count == 0): | |
#Neither are cross predecting | |
print("*********** BOTH servers have single predictions within their domain - returning both ******") | |
return self.pick_top_server_prediction(predictions_dict),2 | |
else: | |
print("Returning just the server that is not cross predicting, dumping the cross prediction") | |
ret_index = 1 if cross_predictions[0] == True else 0 #Given a server cross predicts, return the other server index | |
return ret_index,-1 | |
else: | |
print("*** Both servers have multiple predictions above mean") | |
#both have multiple predictions above mean | |
cross_predictions = {} | |
strict_cross_predictions = {} | |
cross_prediction_count = 0 | |
strict_cross_prediction_count = 0 | |
for server_index in range(len(results)): | |
if (pos_index in results[server_index]["entity_distribution"]): | |
is_included = is_included_in_server_entities(orig_cs_predictions_dict[server_index],servers_arr[server_index],False) | |
strict_is_included = strict_is_included_in_server_entities(orig_cs_predictions_dict[server_index],servers_arr[server_index],False) | |
cross_predictions[server_index] = not is_included | |
strict_cross_predictions[server_index] = not strict_is_included | |
cross_prediction_count += 1 if not is_included else 0 | |
strict_cross_prediction_count += 1 if not strict_is_included else 0 | |
if (cross_prediction_count == 2): | |
print("*********** BOTH servers are ALSO cross predicting and have multiple predictions above mean ******") | |
return self.pick_top_server_prediction(predictions_dict),2 | |
elif (cross_prediction_count == 0): | |
print("*********** BOTH servers are ALSO predicting within their domain ******") | |
#if just one of them is predicting in the common set, then just pick the server that is predicting in its primary set. | |
#if (strict_cross_prediction_count == 1): | |
# ret_index = 1 if (0 not in strict_cross_predictions or strict_cross_predictions[0] == True) else 0 #Given a server cross predicts, return the other server index | |
# return ret_index,-1 | |
#else: | |
# return self.pick_top_server_prediction(predictions_dict),2 | |
return self.pick_top_server_prediction(predictions_dict),2 | |
else: | |
print("Returning just the server that is not cross predicting, dumping the cross prediction. This is mainly to reduce the noise in prefix predictions that show up in CS context predictions") | |
ret_index = 1 if (0 not in cross_predictions or cross_predictions[0] == True) else 0 #Given a server cross predicts, return the other server index | |
return ret_index,-1 | |
#print("*********** One of them is also cross predicting ******") | |
#return self.pick_top_server_prediction(predictions_dict),2 | |
def pick_top_server_prediction(self,predictions_dict): | |
''' | |
''' | |
if (len(predictions_dict) != 2): | |
return 0 | |
assert(len(predictions_dict) == 2) | |
return 0 if (predictions_dict[0][0]["conf"] >= predictions_dict[1][0]["conf"]) else 1 | |
def get_predictions_above_threshold(self,predictions): | |
dist = predictions["cs_distribution"] | |
sum_predictions = 0 | |
ret_arr = [] | |
if(len(dist) != 0): | |
mean_score = 1.0/len(dist) #input is a prob distriubution. so sum is 1 | |
else: | |
mean_score = 0 | |
#sum_deviation = 0 | |
#for node in dist: | |
# sum_deviation += (mean_score - node["confidence"])*(mean_score - node["confidence"]) | |
#variance = sum_deviation/len(dist) | |
#std_dev = math.sqrt(variance) | |
#threshold = mean_score + std_dev*self.threshold #default is 1 standard deviation from mean | |
threshold = mean_score | |
pick_count = 1 | |
for node in dist: | |
if (node["confidence"] >= threshold): | |
ret_arr.append({"e":node["e"],"conf":node["confidence"]}) | |
pick_count += 1 | |
else: | |
break #this is a reverse sorted list. So no need to check anymore | |
if (len(dist) > 0): | |
assert(len(ret_arr) > 0) | |
return ret_arr | |
def check_if_entity_in_arr(self,entity,arr): | |
for node in arr: | |
if (entity == node["e"].split('[')[0]): | |
return True | |
return False | |
def gen_resolved_entity(self,results,server_index,pivot_index,run_index,cross_prediction_count,servers_arr): | |
if (cross_prediction_count == 1 or cross_prediction_count == -1): | |
#This is the case where we are emitting just one server prediction. In this case, if CS and consolidated dont match, emit both | |
if (pivot_index in results[server_index]["orig_cs_prediction_details"]): | |
if (len(results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution']) == 0): | |
#just use the ci prediction in this case. This happens only for boundary cases of a single entity in a sentence and there is no context | |
orig_cs_entity = results[server_index]["orig_ci_prediction_details"][pivot_index]['cs_distribution'][0] | |
else: | |
orig_cs_entity = results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'][0] | |
orig_ci_entity = results[server_index]["orig_ci_prediction_details"][pivot_index]['cs_distribution'][0] | |
m1 = orig_cs_entity["e"].split('[')[0] | |
m1_ci = orig_ci_entity["e"].split('[')[0] | |
is_ci_included = True if (m1_ci in servers_arr[server_index]["precedence"]) else False | |
consolidated_entity = results[server_index]["ner"][pivot_index] | |
m2,dummy = prefix_strip(consolidated_entity["e"].split('[')[0]) | |
if (m1 != m2): | |
#if we come here consolidated is not same as cs prediction. So we emit both consolidated and cs | |
ret_obj = results[server_index]["ner"][run_index].copy() | |
dummy,prefix = prefix_strip(ret_obj["e"]) | |
n1 = flip_category(orig_cs_entity) | |
n1["e"] = prefix + n1["e"] | |
n2 = flip_category(consolidated_entity) | |
ret_obj["e"] = n2["e"] + "/" + n1["e"] | |
return ret_obj | |
else: | |
#if we come here consolidated is same as cs prediction. So we try to either use ci or the second cs prediction if ci is out of domain | |
if (m1 != m1_ci): | |
#CS and CI are not same | |
if (is_ci_included): | |
#Emity both CS and CI | |
ret_obj = results[server_index]["ner"][run_index].copy() | |
dummy,prefix = prefix_strip(ret_obj["e"]) | |
n1 = flip_category(orig_cs_entity) | |
n1["e"] = prefix + n1["e"] | |
n2 = flip_category(orig_ci_entity) | |
n2["e"] = prefix + n2["e"] | |
ret_obj["e"] = n1["e"] + "/" + n2["e"] | |
return ret_obj | |
else: | |
#We come here for the case where CI is not in server list. So we pick the second cs as an option if meaningful | |
if (len(results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution']) >= 2): | |
ret_arr = self.get_predictions_above_threshold(results[server_index]["orig_cs_prediction_details"][pivot_index]) | |
orig_cs_second_entity = results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'][1] | |
m2_cs = orig_cs_second_entity["e"].split('[')[0] | |
is_cs_included = True if (m2_cs in servers_arr[server_index]["precedence"]) else False | |
is_cs_included = True #Disabling cs included check. If prediction above threshold is cross prediction, then letting it through | |
assert (m2_cs != m1) | |
if (is_cs_included and self.check_if_entity_in_arr(m2_cs,ret_arr)): | |
ret_obj = results[server_index]["ner"][run_index].copy() | |
dummy,prefix = prefix_strip(ret_obj["e"]) | |
n1 = flip_category(orig_cs_second_entity) | |
n1["e"] = prefix + n1["e"] | |
n2 = flip_category(orig_cs_entity) | |
n2["e"] = prefix + n2["e"] | |
ret_obj["e"] = n2["e"] + "/" + n1["e"] | |
return ret_obj | |
else: | |
return flip_category(results[server_index]["ner"][run_index]) | |
else: | |
return flip_category(results[server_index]["ner"][run_index]) | |
else: | |
#here cs and ci are same. So use two cs predictions if meaningful | |
if (len(results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution']) >= 2): | |
ret_arr = self.get_predictions_above_threshold(results[server_index]["orig_cs_prediction_details"][pivot_index]) | |
orig_cs_second_entity = results[server_index]["orig_cs_prediction_details"][pivot_index]['cs_distribution'][1] | |
m2_cs = orig_cs_second_entity["e"].split('[')[0] | |
is_cs_included = True if (m2_cs in servers_arr[server_index]["precedence"]) else False | |
is_cs_included = True #Disabling cs included check. If prediction above threshold is cross prediction, then letting it through | |
assert (m2_cs != m1) | |
if (is_cs_included and self.check_if_entity_in_arr(m2_cs,ret_arr)): | |
ret_obj = results[server_index]["ner"][run_index].copy() | |
dummy,prefix = prefix_strip(ret_obj["e"]) | |
n1 = flip_category(orig_cs_second_entity) | |
n1["e"] = prefix + n1["e"] | |
n2 = flip_category(orig_cs_entity) | |
n2["e"] = prefix + n2["e"] | |
ret_obj["e"] = n2["e"] + "/" + n1["e"] | |
return ret_obj | |
else: | |
return flip_category(results[server_index]["ner"][run_index]) | |
else: | |
return flip_category(results[server_index]["ner"][run_index]) | |
else: | |
return flip_category(results[server_index]["ner"][run_index]) | |
else: | |
#Case where both servers dont match | |
ret_obj = results[server_index]["ner"][run_index].copy() | |
#ret_obj["e"] = results[0]["ner"][run_index]["e"] + "/" + results[1]["ner"][run_index]["e"] | |
index2 = 1 if server_index == 0 else 0 #this is the index of the dominant server with hihgher prediction confidence | |
n1 = flip_category(results[server_index]["ner"][run_index]) | |
n2 = flip_category(results[index2]["ner"][run_index]) | |
ret_obj["e"] = n1["e"] + "/" + n2["e"] | |
return ret_obj | |
def confirm_same_size_responses(self,sent,results): | |
count = 0 | |
for i in range(len(results)): | |
if ("ner" in results[i]): | |
ner = results[i]["ner"] | |
else: | |
print("Server",i," returned invalid response;",results[i]) | |
self.error_fp.write("Server " + str(i) + " failed for query: " + sent + "\n") | |
self.error_fp.flush() | |
return 0 | |
if(count == 0): | |
assert(len(ner) > 0) | |
count = len(ner) | |
else: | |
if (count != len(ner)): | |
print("Warning. The return sizes of both servers do not match. This must be truncated sentence, where tokenization causes different length truncations. Using min length") | |
count = count if count < len(ner) else len(ner) | |
return count | |
def get_ensembled_entities(self,sent,results,servers_arr): | |
ensembled_ner = OrderedDict() | |
orig_cs_predictions = OrderedDict() | |
orig_ci_predictions = OrderedDict() | |
ensembled_conf = OrderedDict() | |
ambig_ensembled_conf = OrderedDict() | |
ensembled_ci = OrderedDict() | |
ensembled_cs = OrderedDict() | |
ambig_ensembled_ci = OrderedDict() | |
ambig_ensembled_cs = OrderedDict() | |
print("Ensemble candidates") | |
terms_count = self.confirm_same_size_responses(sent,results) | |
if (terms_count == 0): | |
return ensembled_ner,ensembled_conf,ensembled_ci,ensembled_cs,ambig_ensembled_conf,ambig_ensembled_ci,ambig_ensembled_cs,orig_cs_predictions,orig_ci_predictions | |
assert(len(servers_arr) == len(results)) | |
term_index = 0 | |
while (term_index < terms_count): | |
pos_index = str(term_index + 1) | |
assert(len(servers_arr) == 2) #TBD. Currently assumes two servers in prototype to see if this approach works. To be extended to multiple servers | |
server_index,span_count,cross_prediction_count = self.get_conflict_resolved_entity(results,term_index,terms_count,servers_arr) | |
pivot_index = str(term_index + 1) | |
for span_index in range(span_count): | |
run_index = str(term_index + 1 + span_index) | |
ensembled_ner[run_index] = self.gen_resolved_entity(results,server_index,pivot_index,run_index,cross_prediction_count,servers_arr) | |
if (run_index in results[server_index]["entity_distribution"]): | |
ensembled_conf[run_index] = results[server_index]["entity_distribution"][run_index] | |
ensembled_conf[run_index]["e"] = strip_prefixes(ensembled_ner[run_index]["e"]) #this is to make sure the same tag can be taken from NER result or this structure. | |
#When both server responses are required, just return the details of first server for now | |
ensembled_ci[run_index] = results[server_index]["ci_prediction_details"][run_index] | |
ensembled_cs[run_index] = results[server_index]["cs_prediction_details"][run_index] | |
orig_cs_predictions[run_index] = results[server_index]["orig_cs_prediction_details"][run_index] | |
orig_ci_predictions[run_index] = results[server_index]["orig_ci_prediction_details"][run_index] | |
if (cross_prediction_count == 0 or cross_prediction_count == 2): #This is an ambiguous prediction. Send both server responses | |
second_server = 1 if server_index == 0 else 1 | |
if (run_index in results[second_server]["entity_distribution"]): #It may not be present if the B/I tags are out of sync from servers. | |
ambig_ensembled_conf[run_index] = results[second_server]["entity_distribution"][run_index] | |
ambig_ensembled_conf[run_index]["e"] = ensembled_ner[run_index]["e"] #this is to make sure the same tag can be taken from NER result or this structure. | |
ambig_ensembled_ci[run_index] = results[second_server]["ci_prediction_details"][run_index] | |
if (ensembled_ner[run_index]["e"] != "O"): | |
self.inferred_entities_log_fp.write(results[0]["ner"][run_index]["term"] + " " + ensembled_ner[run_index]["e"] + "\n") | |
term_index += span_count | |
self.inferred_entities_log_fp.flush() | |
return ensembled_ner,ensembled_conf,ensembled_ci,ensembled_cs,ambig_ensembled_conf,ambig_ensembled_ci,ambig_ensembled_cs,orig_cs_predictions,orig_ci_predictions | |
def ensemble_processing(self,sent,results): | |
global actions_arr | |
ensembled_ner,ensembled_conf,ci_details,cs_details,ambig_ensembled_conf,ambig_ci_details,ambig_cs_details,orig_cs_predictions,orig_ci_predictions = self.get_ensembled_entities(sent,results,actions_arr) | |
final_ner = OrderedDict() | |
final_ner["ensembled_ner"] = ensembled_ner | |
final_ner["ensembled_prediction_details"] = ensembled_conf | |
final_ner["ci_prediction_details"] = ci_details | |
final_ner["cs_prediction_details"] = cs_details | |
final_ner["ambig_prediction_details_conf"] = ambig_ensembled_conf | |
final_ner["ambig_prediction_details_ci"] = ambig_ci_details | |
final_ner["ambig_prediction_details_cs"] = ambig_cs_details | |
final_ner["orig_cs_prediction_details"] = orig_cs_predictions | |
final_ner["orig_ci_prediction_details"] = orig_ci_predictions | |
#final_ner["individual"] = results | |
return final_ner | |
class myThread (threading.Thread): | |
def __init__(self, url,param,desc): | |
threading.Thread.__init__(self) | |
self.url = url | |
self.param = param | |
self.desc = desc | |
self.results = {} | |
def run(self): | |
print ("Starting " + self.url + self.param) | |
escaped_url = self.url + self.param.replace("#","-") #TBD. This is a nasty hack for client side handling of #. To be fixed. For some reason, even replacing with parse.quote or just with %23 does not help. The fragment after # is not sent to server. Works just fine in wget with %23 | |
print("ESCAPED:",escaped_url) | |
out = requests.get(escaped_url) | |
try: | |
self.results = json.loads(out.text,object_pairs_hook=OrderedDict) | |
except: | |
print("Empty response from server for input:",self.param) | |
self.results = json.loads("{}",object_pairs_hook=OrderedDict) | |
self.results["server"] = self.desc | |
print ("Exiting " + self.url + self.param) | |
# Create new threads | |
def create_workers(inp_dict,inp): | |
threads_arr = [] | |
for i in range(len(inp_dict)): | |
threads_arr.append(myThread(inp_dict[i]["url"],inp,inp_dict[i]["desc"])) | |
return threads_arr | |
def start_workers(threads_arr): | |
for thread in threads_arr: | |
thread.start() | |
def wait_for_completion(threads_arr): | |
for thread in threads_arr: | |
thread.join() | |
def get_results(threads_arr): | |
results = [] | |
for thread in threads_arr: | |
results.append(thread.results) | |
return results | |
def prefix_strip(term): | |
prefix = "" | |
if (term.startswith("B_") or term.startswith("I_")): | |
prefix = term[:2] | |
term = term[2:] | |
return term,prefix | |
def strip_prefixes(term): | |
split_entities = term.split('/') | |
if (len(split_entities) == 2): | |
term1,dummy = prefix_strip(split_entities[0]) | |
term2,dummy = prefix_strip(split_entities[1]) | |
return term1 + '/' + term2 | |
else: | |
assert(len(split_entities) == 1) | |
term1,dummy = prefix_strip(split_entities[0]) | |
return term1 | |
#This hack is simply done for downstream API used for UI displays the entity instead of the class. Details has all additional info | |
def flip_category(obj): | |
new_obj = obj.copy() | |
entity_type_arr = obj["e"].split("[") | |
if (len(entity_type_arr) > 1): | |
term = entity_type_arr[0] | |
if (term.startswith("B_") or term.startswith("I_")): | |
prefix = term[:2] | |
new_obj["e"] = prefix + entity_type_arr[1].rstrip("]") + "[" + entity_type_arr[0][2:] + "]" | |
else: | |
new_obj["e"] = entity_type_arr[1].rstrip("]") + "[" + entity_type_arr[0] + "]" | |
return new_obj | |
def extract_main_entity(results,server_index,pos_index): | |
main_entity = results[server_index]["ner"][pos_index]["e"].split('[')[0] | |
main_entity,dummy = prefix_strip(main_entity) | |
return main_entity | |
def get_span_info(results,server_index,term_index,terms_count): | |
pos_index = str(term_index + 1) | |
entity = results[server_index]["ner"][pos_index]["e"] | |
span_count = 1 | |
if (entity.startswith("I_")): | |
print("Skipping an I tag for server:",server_index,". This has to be done because of mismatched span because of model specific casing normalization that changes POS tagging. This happens only for sentencees user does not explicirly tag with ':__entity__'") | |
return span_count | |
assert(not entity.startswith("I_")) | |
if (entity.startswith("B_")): | |
term_index += 1 | |
while(term_index < terms_count): | |
pos_index = str(term_index + 1) | |
entity = results[server_index]["ner"][pos_index]["e"] | |
if (entity == "O"): | |
break | |
span_count += 1 | |
term_index += 1 | |
return span_count | |
def is_included_in_server_entities(predictions,s_arr,check_first_only): | |
for entity in predictions: | |
entity = entity['e'].split('[')[0] | |
if ((entity not in s_arr["precedence"]) and (entity not in s_arr["common"])): #do not treat the presence of an entity in common as a cross over | |
return False | |
if (check_first_only): | |
return True #Just check the top prediction for inclusion in the new semantics | |
return True | |
def strict_is_included_in_server_entities(predictions,s_arr,check_first_only): | |
for entity in predictions: | |
entity = entity['e'].split('[')[0] | |
if ((entity not in s_arr["precedence"])): #do not treat the presence of an entity in common as a cross over | |
return False | |
if (check_first_only): | |
return True #Just check the top prediction for inclusion in the new semantics | |
return True | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='main NER for a single model ',formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument('-input', action="store", dest="input",default=DEFAULT_TEST_BATCH_FILE,help='Input file for batch run option') | |
parser.add_argument('-config', action="store", dest="config", default=DEFAULT_CONFIG,help='config file path') | |
parser.add_argument('-output', action="store", dest="output",default=NER_OUTPUT_FILE,help='Output file for batch run option') | |
parser.add_argument('-option', action="store", dest="option",default="canned",help='Valid options are canned,batch,interactive. canned - test few canned sentences used in medium artice. batch - tag sentences in input file. Entities to be tagged are determing used POS tagging to find noun phrases.interactive - input one sentence at a time') | |
results = parser.parse_args() | |
config_file = results.config | |