self-supervised-ner-biomedical / BatchInference.py
ajitrajasekharan's picture
Update BatchInference.py
0c17988
import torch
import subprocess
#from pytorch_transformers import *
from transformers import *
import pdb
import operator
from collections import OrderedDict
import numpy as np
import argparse
import sys
import traceback
import string
import common as utils
import config_utils as cf
import requests
import json
import streamlit as st
# OPTIONAL: if you want to have more information on what's happening, activate the logger as follows
import logging
logging.basicConfig(level=logging.INFO)
DEFAULT_TOP_K = 20
DEFAULT_CONFIG = "./server_config.json"
DEFAULT_MODEL_PATH='./'
DEFAULT_LABELS_PATH='./labels.txt'
DEFAULT_TO_LOWER=False
DESC_FILE="./common_descs.txt"
SPECIFIC_TAG=":__entity__"
MAX_TOKENIZED_SENT_LENGTH = 500 #additional buffer for CLS SEP and entity term
try:
from subprocess import DEVNULL # Python 3.
except ImportError:
DEVNULL = open(os.devnull, 'wb')
@st.cache()
def load_bert_model(model_name,to_lower):
try:
bert_tokenizer = BertTokenizer.from_pretrained(model_name,do_lower_case=to_lower)
bert_model = BertForMaskedLM.from_pretrained(model_name)
return bert_tokenizer,bert_model
except Exception as e:
pass
def read_descs(file_name):
ret_dict = {}
with open(file_name) as fp:
line = fp.readline().rstrip("\n")
if (len(line) >= 1):
ret_dict[line] = 1
while line:
line = fp.readline().rstrip("\n")
if (len(line) >= 1):
ret_dict[line] = 1
return ret_dict
def read_vocab(file_name):
l_vocab_dict = {}
o_vocab_dict = {}
with open(file_name) as fp:
for line in fp:
line = line.rstrip('\n')
if (len(line) > 0):
l_vocab_dict[line.lower()] = line #If there are multiple cased versions they will be collapsed into one. which is okay since we have the original saved. This is only used
#when a word is not found in its pristine form in the original list.
o_vocab_dict[line] = line
print("Read vocab file:",len(o_vocab_dict))
return o_vocab_dict,l_vocab_dict
def consolidate_labels(existing_node,new_labels,new_counts):
"""Consolidates all the labels and counts for terms ignoring casing
For instance, egfr may not have an entity label associated with it
but eGFR and EGFR may have. So if input is egfr, then this function ensures
the combined entities set fo eGFR and EGFR is made so as to return that union
for egfr
"""
new_dict = {}
existing_labels_arr = existing_node["label"].split('/')
existing_counts_arr = existing_node["counts"].split('/')
new_labels_arr = new_labels.split('/')
new_counts_arr = new_counts.split('/')
assert(len(existing_labels_arr) == len(existing_counts_arr))
assert(len(new_labels_arr) == len(new_counts_arr))
for i in range(len(existing_labels_arr)):
new_dict[existing_labels_arr[i]] = int(existing_counts_arr[i])
for i in range(len(new_labels_arr)):
if (new_labels_arr[i] in new_dict):
new_dict[new_labels_arr[i]] += int(new_counts_arr[i])
else:
new_dict[new_labels_arr[i]] = int(new_counts_arr[i])
sorted_d = OrderedDict(sorted(new_dict.items(), key=lambda kv: kv[1], reverse=True))
ret_labels_str = ""
ret_counts_str = ""
count = 0
for key in sorted_d:
if (count == 0):
ret_labels_str = key
ret_counts_str = str(sorted_d[key])
else:
ret_labels_str += '/' + key
ret_counts_str += '/' + str(sorted_d[key])
count += 1
return {"label":ret_labels_str,"counts":ret_counts_str}
def read_labels(labels_file):
terms_dict = OrderedDict()
lc_terms_dict = OrderedDict()
with open(labels_file,encoding="utf-8") as fin:
count = 1
for term in fin:
term = term.strip("\n")
term = term.split()
if (len(term) == 3):
terms_dict[term[2]] = {"label":term[0],"counts":term[1]}
lc_term = term[2].lower()
if (lc_term in lc_terms_dict):
lc_terms_dict[lc_term] = consolidate_labels(lc_terms_dict[lc_term],term[0],term[1])
else:
lc_terms_dict[lc_term] = {"label":term[0],"counts":term[1]}
count += 1
else:
print("Invalid line:",term)
assert(0)
print("count of labels in " + labels_file + ":", len(terms_dict))
return terms_dict,lc_terms_dict
class BatchInference:
def __init__(self, config_file,path,to_lower,patched,topk,abbrev,tokmod,vocab_path,labels_file,delimsep):
print("Model path:",path,"lower casing set to:",to_lower," is patched ", patched)
self.path = path
base_path = cf.read_config(config_file)["BASE_PATH"] if ("BASE_PATH" in cf.read_config(config_file)) else "./"
desc_file_path = cf.read_config(config_file)["DESC_FILE"] if ("DESC_FILE" in cf.read_config(config_file)) else DESC_FILE
self.labels_dict,self.lc_labels_dict = read_labels(labels_file)
#self.tokenizer = BertTokenizer.from_pretrained(path,do_lower_case=to_lower) ### Set this to to True for uncased models
#self.model = BertForMaskedLM.from_pretrained(path)
self.tokenizer, self.model = load_bert_model(path,to_lower)
self.model.eval()
#st.info("model loaded")
self.descs = read_descs(desc_file_path)
#st.info("descs loaded")
self.top_k = topk
self.patched = patched
self.abbrev = abbrev
self.tokmod = tokmod
self.delimsep = delimsep
self.truncated_fp = open(base_path + "truncated_sentences.txt","a")
self.always_log_fp = open(base_path + "CI_LOGS.txt","a")
if (cf.read_config(config_file)["USE_CLS"] == "1"): #Models like Bert base cased return same prediction for CLS regardless of input. So ignore CLS
print("************** USE CLS: Turned ON for this model. ******* ")
self.use_cls = True
else:
print("************** USE CLS: Turned OFF for this model. ******* ")
self.use_cls = False
if (cf.read_config(config_file)["LOG_DESCS"] == "1"):
self.log_descs = True
self.ci_fp = open(base_path + "log_ci_predictions.txt","w")
self.cs_fp = open(base_path + "log_cs_predictions.txt","w")
else:
self.log_descs = False
self.pos_server_url = cf.read_config(config_file)["POS_SERVER_URL"]
#st.info("Attemting to load vocab file")
if (tokmod):
self.o_vocab_dict,self.l_vocab_dict = read_vocab(vocab_path + "/vocab.txt")
else:
self.o_vocab_dict = {}
self.l_vocab_dict = {}
# st.info("Constructor complete")
#pdb.set_trace()
def dispatch_request(self,url):
max_retries = 10
attempts = 0
while True:
try:
r = requests.get(url,timeout=1000)
if (r.status_code == 200):
return r
except:
print("Request:", url, " failed. Retrying...")
attempts += 1
if (attempts >= max_retries):
print("Request:", url, " failed")
break
def modify_text_to_match_vocab(self,text):
ret_arr = []
text = text.split()
for word in text:
if (word in self.o_vocab_dict):
ret_arr.append(word)
else:
if (word.lower() in self.l_vocab_dict):
ret_arr.append(self.l_vocab_dict[word.lower()])
else:
ret_arr.append(word)
return ' '.join(ret_arr)
#This is bad hack for prototyping - parsing from text output as opposed to json
def extract_POS(self,text):
arr = text.split('\n')
if (len(arr) > 0):
start_pos = 0
for i,line in enumerate(arr):
if (len(line) > 0):
start_pos += 1
continue
else:
break
#print(arr[start_pos:])
terms_arr = []
for i,line in enumerate(arr[start_pos:]):
terms = line.split('\t')
if (len(terms) == 5):
#print(terms)
terms_arr.append(terms)
return terms_arr
def masked_word_first_letter_capitalize(self,entity):
arr = entity.split()
ret_arr = []
for term in arr:
if (len(term) > 1 and term[0].islower() and term[1].islower()):
ret_arr.append(term[0].upper() + term[1:])
else:
ret_arr.append(term)
return ' '.join(ret_arr)
def gen_single_phrase_sentences(self,terms_arr,span_arr):
sentence_template = "%s is a entity"
#print(span_arr)
sentences = []
singleton_spans_arr = []
run_index = 0
entity = ""
singleton_span = []
while (run_index < len(span_arr)):
if (span_arr[run_index] == 1):
while (run_index < len(span_arr)):
if (span_arr[run_index] == 1):
#print(terms_arr[run_index][WORD_POS],end=' ')
if (len(entity) == 0):
entity = terms_arr[run_index][utils.WORD_POS]
else:
entity = entity + " " + terms_arr[run_index][utils.WORD_POS]
singleton_span.append(1)
run_index += 1
else:
break
#print()
for i in sentence_template.split():
if (i != "%s"):
singleton_span.append(0)
entity = self.masked_word_first_letter_capitalize(entity)
if (self.tokmod):
entity = self.modify_text_to_match_vocab(entity)
sentence = sentence_template % entity
sentences.append(sentence)
singleton_spans_arr.append(singleton_span)
#print(sentence)
#rint(singleton_span)
entity = ""
singleton_span = []
else:
run_index += 1
return sentences,singleton_spans_arr
def gen_padded_sentence(self,text,max_tokenized_sentence_length,tokenized_text_arr,orig_tokenized_length_arr,indexed_tokens_arr,attention_mask_arr,to_replace):
if (to_replace):
text_arr = text.split()
new_text_arr = []
for i in range(len(text_arr)):
if (text_arr[i] == "entity" ):
new_text_arr.append( "[MASK]")
else:
new_text_arr.append(text_arr[i])
text = ' '.join(new_text_arr)
text = '[CLS] ' + text + ' [SEP]'
tokenized_text = self.tokenizer.tokenize(text)
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
tok_length = len(indexed_tokens)
max_tokenized_sentence_length = max_tokenized_sentence_length if tok_length <= max_tokenized_sentence_length else tok_length
indexed_tokens_arr.append(indexed_tokens)
attention_mask_arr.append([1]*tok_length)
tokenized_text_arr.append(tokenized_text)
orig_tokenized_length_arr.append(tokenized_text)
return max_tokenized_sentence_length
def find_entity(self,word):
entities = self.labels_dict
lc_entities = self.lc_labels_dict
in_vocab = False
#words = self.filter_glue_words(words) #do not filter glue words anymore. Let them pass through
l_word = word.lower()
if l_word.isdigit():
ret_label = "MEASURE"
ret_counts = str(1)
elif (word in entities):
ret_label = entities[word]["label"]
ret_counts = entities[word]["counts"]
in_vocab = True
elif (l_word in entities):
ret_label = entities[l_word]["label"]
ret_counts = entities[l_word]["counts"]
in_vocab = True
elif (l_word in lc_entities):
ret_label = lc_entities[l_word]["label"]
ret_counts = lc_entities[l_word]["counts"]
in_vocab = True
else:
ret_label = "OTHER"
ret_counts = "1"
if (ret_label == "OTHER"):
ret_label = "UNTAGGED_ENTITY"
ret_counts = "1"
#print(word,ret_label,ret_counts)
return ret_label,ret_counts,in_vocab
#This is just a trivial hack for consistency of CI prediction of numbers
def override_ci_number_predictions(self,masked_sent):
words = masked_sent.split()
words_count = len(words)
if (len(words) == 4 and words[words_count-1] == "entity" and words[words_count -2] == "a" and words[words_count -3] == "is" and words[0].isnumeric()): #only integers skipped
return True,"two","1","NUMBER"
else:
return False,"","",""
def override_ci_for_vocab_terms(self,masked_sent):
words = masked_sent.split()
words_count = len(words)
if (len(words) == 4 and words[words_count-1] == "entity" and words[words_count -2] == "a" and words[words_count -3] == "is"):
entity,entity_count,in_vocab = self.find_entity(words[0])
if (in_vocab):
return True,words[0],entity_count,entity
return False,"","",""
def normalize_sent(self,sent):
normalized_tokens = "!\"%();?[]`{}"
end_tokens = "!,.:;?"
sent = sent.rstrip()
if (len(sent) > 1):
if (self.delimsep):
for i in range(len(normalized_tokens)):
sent = sent.replace(normalized_tokens[i],' ' + normalized_tokens[i] + ' ')
sent = sent.rstrip()
if (not sent.endswith(":__entity__")):
last_char = sent[-1]
if (last_char not in end_tokens): #End all sentences with a period if not already present in sentence.
sent = sent + ' . '
print("Normalized sent",sent)
return sent
def truncate_sent_if_too_long(self,text):
truncated_count = 0
orig_sent = text
while (True):
tok_text = '[CLS] ' + text + ' [SEP]'
tokenized_text = self.tokenizer.tokenize(tok_text)
if (len(tokenized_text) < MAX_TOKENIZED_SENT_LENGTH):
break
text = ' '.join(text.split()[:-1])
truncated_count += 1
if (truncated_count > 0):
print("Input sentence was truncated by: ", truncated_count, " tokens")
self.truncated_fp.write("Input sentence was truncated by: " + str(truncated_count) + " tokens\n")
self.truncated_fp.write(orig_sent + "\n")
self.truncated_fp.write(text + "\n\n")
return text
def get_descriptors(self,sent,pos_arr):
'''
Batched creation of descriptors given a sentence.
1) Find noun phrases to tag in a sentence if user did not explicitly tag.
2) Create 'N' CS and CI sentences if there are N phrases to tag. Total 2*N sentences
3) Create a batch padding all sentences to the maximum sentence length.
4) Perform inference on batch
5) Return json of descriptors for the ooriginal sentence as well as all CI sentences
'''
#Truncate sent if the tokenized sent is longer than max sent length
#st.info("in get descriptors")
sent = self.truncate_sent_if_too_long(sent)
#This is a modification of input text to words in vocab that match it in case insensitive manner.
#This is *STILL* required when we are using subwords too for prediction. The prediction quality is still better.
#An example is Mesothelioma is caused by exposure to asbestos. The quality of prediction is better when Mesothelioma is not split by lowercasing with A100 model
if (self.tokmod):
sent = self.modify_text_to_match_vocab(sent)
#The input sentence is normalized. Specifically all input is terminated with a punctuation if not already present. Also some of the punctuation marks are separated from text if glued to a word(disabled by default for test set sync)
sent = self.normalize_sent(sent)
#Step 1. Find entities to tag if user did not explicitly tag terms
#All noun phrases are tagged for prediction
if (SPECIFIC_TAG in sent):
terms_arr = utils.set_POS_based_on_entities(sent)
else:
if (pos_arr is None):
assert(0)
url = self.pos_server_url + sent.replace('"','\'')
r = self.dispatch_request(url)
terms_arr = self.extract_POS(r.text)
else:
# st.info("Reusing Pos arr")
terms_arr = pos_arr
print(terms_arr)
#Note span arr only contains phrases in the input that need to be tagged - not the span of all phrases in sentences
#Step 2. Create N CS sentences
#This returns masked sentences for all positions
main_sent_arr,masked_sent_arr,span_arr = utils.detect_masked_positions(terms_arr)
ignore_cs = True if (len(masked_sent_arr) == 1 and len(masked_sent_arr[0]) == 2 and masked_sent_arr[0][0] == "__entity__" and masked_sent_arr[0][1] == ".") else False #This is a boundary condition to avoid using cs if the input is just trying to get entity type for a phrase. There is no sentence context in that case.
#Step 2. Create N CI sentences
singleton_sentences,not_used_singleton_spans_arr = self.gen_single_phrase_sentences(terms_arr,span_arr)
#We now have 2*N sentences
max_tokenized_sentence_length = 0
tokenized_text_arr = []
indexed_tokens_arr = []
attention_mask_arr = []
all_sentences_arr = []
orig_tokenized_length_arr = []
assert(len(masked_sent_arr) == len(singleton_sentences))
for ci_s,cs_s in zip(singleton_sentences,masked_sent_arr):
all_sentences_arr.append(ci_s)
max_tokenized_sentence_length = self.gen_padded_sentence(ci_s,max_tokenized_sentence_length,tokenized_text_arr,orig_tokenized_length_arr,indexed_tokens_arr,attention_mask_arr,True)
cs_s = ' '.join(cs_s).replace("__entity__","entity")
all_sentences_arr.append(cs_s)
max_tokenized_sentence_length = self.gen_padded_sentence(cs_s,max_tokenized_sentence_length,tokenized_text_arr,orig_tokenized_length_arr,indexed_tokens_arr,attention_mask_arr,True)
#pad all sentences with length less than max sentence length. This includes the full sentence too since we used indexed_tokens_arr
for i in range(len(indexed_tokens_arr)):
padding = [self.tokenizer.pad_token_id]*(max_tokenized_sentence_length - len(indexed_tokens_arr[i]))
att_padding = [0]*(max_tokenized_sentence_length - len(indexed_tokens_arr[i]))
if (len(padding) > 0):
indexed_tokens_arr[i].extend(padding)
attention_mask_arr[i].extend(att_padding)
assert(len(main_sent_arr) == len(span_arr))
assert(len(all_sentences_arr) == len(indexed_tokens_arr))
assert(len(all_sentences_arr) == len(attention_mask_arr))
assert(len(all_sentences_arr) == len(tokenized_text_arr))
assert(len(all_sentences_arr) == len(orig_tokenized_length_arr))
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor(indexed_tokens_arr)
attention_tensors = torch.tensor(attention_mask_arr)
print("Input:",sent)
ret_obj = OrderedDict()
with torch.no_grad():
predictions = self.model(tokens_tensor, attention_mask=attention_tensors)
for sent_index in range(len(predictions[0])):
#print("*** Current sentence ***",all_sentences_arr[sent_index])
if (self.log_descs):
fp = self.cs_fp if sent_index %2 != 0 else self.ci_fp
fp.write("\nCurrent sentence: " + all_sentences_arr[sent_index] + "\n")
prediction = "ci_prediction" if (sent_index %2 == 0 ) else "cs_prediction"
out_index = int(sent_index/2) + 1
if (out_index not in ret_obj):
ret_obj[out_index] = {}
assert(prediction not in ret_obj[out_index])
ret_obj[out_index][prediction] = {}
ret_obj[out_index][prediction]["sentence"] = all_sentences_arr[sent_index]
curr_sent_arr = []
ret_obj[out_index][prediction]["descs"] = curr_sent_arr
for word in range(len(tokenized_text_arr[sent_index])):
if (word == len(tokenized_text_arr[sent_index]) - 1): # SEP is skipped for CI and CS
continue
if (sent_index %2 == 0 and (word != 0 and word != len(orig_tokenized_length_arr[sent_index]) - 2)): #For all CI sentences pick only the neighbors of CLS and the last word of the sentence (X is a entity)
#if (sent_index %2 == 0 and (word != 0 and word != len(orig_tokenized_length_arr[sent_index]) - 2) and word != len(orig_tokenized_length_arr[sent_index]) - 3): #For all CI sentences - just pick CLS, "a" and "entity"
#if (sent_index %2 == 0 and (word != 0 and (word == len(orig_tokenized_length_arr[sent_index]) - 4))): #For all CI sentences pick ALL terms excluding "is" in "X is a entity"
continue
if (sent_index %2 == 0 and (word == 0 and not self.use_cls)): #This is for models like bert base cased where we cant use CLS - it is the same for all words.
continue
if (sent_index %2 != 0 and tokenized_text_arr[sent_index][word] != "[MASK]"): # for all CS sentences skip all terms except the mask position
continue
results_dict = {}
masked_index = word
#pick all model predictions for current position word
if (self.patched):
for j in range(len(predictions[0][0][sent_index][masked_index])):
tok = tokenizer.convert_ids_to_tokens([j])[0]
results_dict[tok] = float(predictions[0][0][sent_index][masked_index][j].tolist())
else:
for j in range(len(predictions[0][sent_index][masked_index])):
tok = self.tokenizer.convert_ids_to_tokens([j])[0]
results_dict[tok] = float(predictions[0][sent_index][masked_index][j].tolist())
k = 0
#sort it - big to small
sorted_d = OrderedDict(sorted(results_dict.items(), key=lambda kv: kv[1], reverse=True))
#print("********* Top predictions for token: ",tokenized_text_arr[sent_index][word])
if (self.log_descs):
fp.write("********* Top predictions for token: " + tokenized_text_arr[sent_index][word] + "\n")
if (sent_index %2 == 0): #For CI sentences, just pick half for CLS and entity position to match with CS counts
if (self.use_cls): #If we are not using [CLS] for models like BBC, then take all top k from the entity prediction
top_k = self.top_k/2
else:
top_k = self.top_k
else:
top_k = self.top_k
#Looping through each descriptor prediction for a position and picking it up subject to some conditions
for index in sorted_d:
#if (index in string.punctuation or index.startswith('##') or len(index) == 1 or index.startswith('.') or index.startswith('[')):
if index.lower() in self.descs: #these have almost no entity info - glue words like "the","a"
continue
#if (index in string.punctuation or len(index) == 1 or index.startswith('.') or index.startswith('[') or index.startswith("#")):
if (index in string.punctuation or len(index) == 1 or index.startswith('.') or index.startswith('[')):
continue
if (index.startswith("#")): #subwords suggest model is trying to predict a multi word term that generally tends to be noisy. So penalize. Count and skip
k += 1
continue
#print(index,round(float(sorted_d[index]),4))
if (sent_index % 2 != 0):
#CS predictions
entity,entity_count,dummy = self.find_entity(index)
if (self.log_descs):
self.cs_fp.write(index + " " + entity + " " + entity_count + " " + str(round(float(sorted_d[index]),4)) + "\n")
if (not ignore_cs):
curr_sent_arr.append({"desc":index,"e":entity,"e_count":entity_count,"v":str(round(float(sorted_d[index]),4))})
if (all_sentences_arr[sent_index].strip().rstrip(".").strip().endswith("entity")):
self.always_log_fp.write(' '.join(all_sentences_arr[sent_index].split()[:-1]) + " " + index + " :__entity__\n")
else:
#CI predictions of the form X is a entity
entity,entity_count,dummy = self.find_entity(index) #index is one of the predicted descs for the [CLS]/[MASK] psition
number_override,override_index,override_entity_count,override_entity = self.override_ci_number_predictions(all_sentences_arr[sent_index]) #Note this override just uses the sentence to override all descs
if (number_override): #note the prediction for this position still takes the prediction float values model returns
index = override_index
entity_count = override_entity_count
entity = override_entity
else:
if (not self.use_cls or word != 0):
override,override_index,override_entity_count,override_entity = self.override_ci_for_vocab_terms(all_sentences_arr[sent_index]) #this also uses the sentence to override, ignoring descs, except reusing the prediction score
if (override): #note the prediction for this position still takes the prediction float values model returns
index = override_index
entity_count = override_entity_count
entity = override_entity
k = top_k #just add this override once. We dont have to add this override for each descripor and inundate downstream NER with the same signature
if (self.log_descs):
self.ci_fp.write(index + " " + entity + " " + entity_count + " " + str(round(float(sorted_d[index]),4)) + "\n")
curr_sent_arr.append({"desc":index,"e":entity,"e_count":entity_count,"v":str(round(float(sorted_d[index]),4))})
#if (index != "two" and not index.startswith("#") and not all_sentences_arr[sent_index].strip().startswith("is ")):
if (index != "two" and not all_sentences_arr[sent_index].strip().startswith("is ")):
self.always_log_fp.write(' '.join(all_sentences_arr[sent_index].split()[:-1]) + " " + index + " :__entity__\n")
k += 1
if (k >= top_k):
break
#print()
#print(ret_obj)
#print(ret_obj)
#st.info("Enf. of prediciton")
#pdb.set_trace()
#final_obj = {"terms_arr":main_sent_arr,"span_arr":span_arr,"descs_and_entities":ret_obj,"all_sentences":all_sentences_arr}
final_obj = {"input":sent,"terms_arr":main_sent_arr,"span_arr":span_arr,"descs_and_entities":ret_obj}
if (self.log_descs):
self.ci_fp.flush()
self.cs_fp.flush()
self.always_log_fp.flush()
self.truncated_fp.flush()
return final_obj
test_arr = [
"ajit? is an engineer .",
"Sam:__entity__ Malone:__entity__ .",
"1. Jesper:__entity__ Ronnback:__entity__ ( Sweden:__entity__ ) 25.76 points",
"He felt New York has a chance:__entity__ to win this year's competition .",
"The new omicron variant could increase the likelihood that people will need a fourth coronavirus vaccine dose earlier than expected, executives at Prin dummy:__entity__ said Wednesday .",
"The new omicron variant could increase the likelihood that people will need a fourth coronavirus vaccine dose earlier than expected, executives at pharmaceutical:__entity__ giant:__entity__ Pfizer:__entity__ said Wednesday .",
"The conditions:__entity__ in the camp were very poor",
"Imatinib:__entity__ is used to treat nsclc",
"imatinib:__entity__ is used to treat nsclc",
"imatinib:__entity__ mesylate:__entity__ is used to treat nsclc",
"Staten is a :__entity__",
"John is a :__entity__",
"I met my best friend at eighteen :__entity__",
"I met my best friend at Parkinson's",
"e",
"Bandolier - Budgie ' , a free itunes app for ipad , iphone and ipod touch , released in December 2011 , tells the story of the making of Bandolier in the band 's own words - including an extensive audio interview with Burke Shelley",
"The portfolio manager of the new cryptocurrency firm underwent a bone marrow biopsy: for AML:__entity__:",
"Coronavirus:__entity__ disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic.[8]Symptoms of COVID-19 are variable, but often include fever,[9] cough, headache,[10] fatigue, breathing difficulties, and loss of smell and taste.[11][12][13] Symptoms may begin one to fourteen days after exposure to the virus. At least a third of people who are infected do not develop noticeable symptoms.[14] Of those people who develop symptoms noticeable enough to be classed as patients, most (81%) develop mild to moderate symptoms (up to mild pneumonia), while 14% develop severe symptoms (dyspnea, hypoxia, or more than 50% lung involvement on imaging), and 5% suffer critical symptoms (respiratory failure, shock, or multiorgan dysfunction).[15] Older people are at a higher risk of developing severe symptoms. Some people continue to experience a range of effects (long COVID) for months after recovery, and damage to organs has been observed.[16] Multi-year studies are underway to further investigate the long-term effects of the disease.[16]COVID-19 transmits when people breathe in air contaminated by droplets and small airborne particles containing the virus. The risk of breathing these in is highest when people are in close proximity, but they can be inhaled over longer distances, particularly indoors. Transmission can also occur if splashed or sprayed with contaminated fluids in the eyes, nose or mouth, and, rarely, via contaminated surfaces. People remain contagious for up to 20 days, and can spread the virus even if they do not develop symptoms.[17][18]Several testing methods have been developed to diagnose the disease. The standard diagnostic method is by detection of the virus' nucleic acid by real-time reverse transcription polymerase chain reaction (rRT-PCR), transcription-mediated amplification (TMA), or by reverse transcription loop-mediated isothermal amplification (RT-LAMP) from a nasopharyngeal swab.Several COVID-19 vaccines have been approved and distributed in various countries, which have initiated mass vaccination campaigns. Other preventive measures include physical or social distancing, quarantining, ventilation of indoor spaces, covering coughs and sneezes, hand washing, and keeping unwashed hands away from the face. The use of face masks or coverings has been recommended in public settings to minimize the risk of transmissions. While work is underway to develop drugs that inhibit the virus, the primary treatment is symptomatic. Management involves the treatment of symptoms, supportive care, isolation, and experimental measures.",
"imatinib was used to treat Michael Jackson . ",
"eg .",
"mesothelioma is caused by exposure to organic :__entity__",
"Mesothelioma is caused by exposure to asbestos:__entity__",
"Asbestos is a highly :__entity__",
"Fyodor:__entity__ Mikhailovich:__entity__ Dostoevsky:__entity__ was treated for Parkinsons:__entity__ and later died of lung carcinoma",
"Fyodor:__entity__ Mikhailovich:__entity__ Dostoevsky:__entity__",
"imatinib was used to treat Michael:__entity__ Jackson:__entity__",
"Ajit flew to Boston:__entity__",
"Ajit:__entity__ flew to Boston",
"A eGFR below 60:__entity__ indicates chronic kidney disease",
"imatinib was used to treat Michael Jackson",
"Ajit Valath:__entity__ Rajasekharan is an engineer at nFerence headquartered in Cambrigde MA",
"imatinib:__entity__",
"imatinib",
"iplimumab:__entity__",
"iplimumab",
"engineer:__entity__",
"engineer",
"Complications include peritonsillar:__entity__ abscess::__entity__",
"Imatinib was the first signal transduction inhibitor (STI,, used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic:__entity__ myeloid:__entity__ leukemia:__entity__ (CML,",
"Imatinib was the first signal transduction inhibitor (STI,, used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic myeloid leukemia (CML,",
"Imatinib was the first signal transduction inhibitor (STI,, used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic:__entity__ myeloid:___entity__ leukemia:__entity__ (CML,",
"Ajit Rajasekharan is an engineer:__entity__ at nFerence:__entity__",
"Imatinib was the first signal transduction inhibitor (STI,, used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic myeloid leukemia (CML,",
"Ajit:__entity__ Rajasekharan:__entity__ is an engineer",
"Imatinib:__entity__ was the first signal transduction inhibitor (STI,, used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic myeloid leukemia (CML,",
"Ajit Valath Rajasekharan is an engineer at nFerence headquartered in Cambrigde MA",
"Ajit:__entity__ Valath Rajasekharan is an engineer:__entity__ at nFerence headquartered in Cambrigde MA",
"Ajit:__entity__ Valath:__entity__ Rajasekharan is an engineer:__entity__ at nFerence headquartered in Cambrigde MA",
"Ajit:__entity__ Valath:__entity__ Rajasekharan:__entity__ is an engineer:__entity__ at nFerence headquartered in Cambrigde MA",
"Ajit Raj is an engineer:__entity__ at nFerence",
"Ajit Valath:__entity__ Rajasekharan is an engineer:__entity__ at nFerence headquartered in Cambrigde:__entity__ MA",
"Ajit Valath Rajasekharan is an engineer:__entity__ at nFerence headquartered in Cambrigde:__entity__ MA",
"Ajit Valath Rajasekharan is an engineer:__entity__ at nFerence headquartered in Cambrigde MA",
"Ajit Valath Rajasekharan is an engineer at nFerence headquartered in Cambrigde MA",
"Ajit:__entity__ Rajasekharan:__entity__ is an engineer at nFerence:__entity__",
"Imatinib mesylate is used to treat non small cell lung cancer",
"Imatinib mesylate is used to treat :__entity__",
"Imatinib is a term:__entity__",
"nsclc is a term:__entity__",
"Ajit Rajasekharan is a term:__entity__",
"ajit rajasekharan is a term:__entity__",
"John Doe is a term:__entity__"
]
def test_sentences(singleton,iter_val):
with open("debug.txt","w") as fp:
for test in iter_val:
test = test.rstrip('\n')
fp.write(test + "\n")
print(test)
out = singleton.get_descriptors(test)
print(out)
fp.write(json.dumps(out,indent=4))
fp.flush()
print()
pdb.set_trace()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='BERT descriptor service given a sentence. The word to be masked is specified as the special token entity ',formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-config', action="store", dest="config", default=DEFAULT_CONFIG,help='config file path')
parser.add_argument('-model', action="store", dest="model", default=DEFAULT_MODEL_PATH,help='BERT pretrained models, or custom model path')
parser.add_argument('-input', action="store", dest="input", default="",help='Optional input file with sentences. If not specified, assumed to be canned sentence run (default behavior)')
parser.add_argument('-topk', action="store", dest="topk", default=DEFAULT_TOP_K,type=int,help='Number of neighbors to display')
parser.add_argument('-tolower', dest="tolower", action='store_true',help='Convert tokens to lowercase. Set to True only for uncased models')
parser.add_argument('-no-tolower', dest="tolower", action='store_false',help='Convert tokens to lowercase. Set to True only for uncased models')
parser.set_defaults(tolower=False)
parser.add_argument('-patched', dest="patched", action='store_true',help='Is pytorch code patched to harvest [CLS]')
parser.add_argument('-no-patched', dest="patched", action='store_false',help='Is pytorch code patched to harvest [CLS]')
parser.add_argument('-abbrev', dest="abbrev", action='store_true',help='Just output pivots - not all neighbors')
parser.add_argument('-no-abbrev', dest="abbrev", action='store_false',help='Just output pivots - not all neighbors')
parser.add_argument('-tokmod', dest="tokmod", action='store_true',help='Modify input token casings to match vocab - meaningful only for cased models')
parser.add_argument('-no-tokmod', dest="tokmod", action='store_false',help='Modify input token casings to match vocab - meaningful only for cased models')
parser.add_argument('-vocab', action="store", dest="vocab", default=DEFAULT_MODEL_PATH,help='Path to vocab file. This is required only if tokmod is true')
parser.add_argument('-labels', action="store", dest="labels", default=DEFAULT_LABELS_PATH,help='Path to labels file. This returns labels also')
parser.add_argument('-delimsep', dest="delimsep", action='store_true',help='Modify input tokens where delimiters are stuck to tokens. Turned off by default to be in sync with test sets')
parser.add_argument('-no-delimsep', dest="delimsep", action='store_true',help='Modify input tokens where delimiters are stuck to tokens. Turned off by default to be in sync with test sets')
parser.set_defaults(tolower=False)
parser.set_defaults(patched=False)
parser.set_defaults(abbrev=True)
parser.set_defaults(tokmod=True)
parser.set_defaults(delimsep=False)
results = parser.parse_args()
try:
singleton = BatchInference(results.config,results.model,results.tolower,results.patched,results.topk,results.abbrev,results.tokmod,results.vocab,results.labels,results.delimsep)
print("To lower casing is set to:",results.tolower)
if (len(results.input) == 0):
print("Canned test mode")
test_sentences(singleton,test_arr)
else:
print("Batch file test mode")
fp = open(results.input)
test_sentences(singleton,fp)
except:
print("Unexpected error:", sys.exc_info()[0])
traceback.print_exc(file=sys.stdout)