Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,249 +1,78 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import fitz
|
4 |
-
import spacy
|
5 |
-
import json
|
6 |
-
import subprocess
|
7 |
-
import re
|
8 |
-
import numpy as np
|
9 |
-
from summa import keywords
|
10 |
-
from nltk.tokenize import sent_tokenize, word_tokenize
|
11 |
from sentence_transformers import SentenceTransformer, util
|
12 |
-
import
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
# Embedding generation (unchanged)
|
89 |
-
def get_chunk_embeddings(chunks):
|
90 |
-
return [sbert_model.encode(chunk, convert_to_tensor=True) for chunk in chunks]
|
91 |
-
|
92 |
-
# Levenshtein distance and keyword correction (unchanged)
|
93 |
-
def levenshtein_distance(s1, s2):
|
94 |
-
if len(s1) < len(s2):
|
95 |
-
return levenshtein_distance(s2, s1)
|
96 |
-
if len(s2) == 0:
|
97 |
-
return len(s1)
|
98 |
-
previous_row = range(len(s2) + 1)
|
99 |
-
for i, c1 in enumerate(s1):
|
100 |
-
current_row = [i + 1]
|
101 |
-
for j, c2 in enumerate(s2):
|
102 |
-
insertions = previous_row[j + 1] + 1
|
103 |
-
deletions = current_row[j] + 1
|
104 |
-
substitutions = previous_row[j] + (c1 != c2)
|
105 |
-
current_row.append(min(insertions, deletions, substitutions))
|
106 |
-
previous_row = current_row
|
107 |
-
return previous_row[-1]
|
108 |
-
|
109 |
-
def correct_keywords(query_keywords, stored_keywords, threshold=2):
|
110 |
-
corrected_keywords = set()
|
111 |
-
for qk in query_keywords:
|
112 |
-
if qk in stored_keywords:
|
113 |
-
corrected_keywords.add(qk)
|
114 |
-
else:
|
115 |
-
min_dist = float('inf')
|
116 |
-
best_match = qk
|
117 |
-
for sk in stored_keywords:
|
118 |
-
dist = levenshtein_distance(qk, sk)
|
119 |
-
if dist < min_dist:
|
120 |
-
min_dist = dist
|
121 |
-
best_match = sk
|
122 |
-
if min_dist <= threshold:
|
123 |
-
corrected_keywords.add(best_match)
|
124 |
-
else:
|
125 |
-
corrected_keywords.add(qk)
|
126 |
-
return corrected_keywords
|
127 |
-
|
128 |
-
# Bit Vector-based search and retrieval (unchanged)
|
129 |
-
def process_pdf(pdf_file):
|
130 |
-
text = extract_text_from_pdf(pdf_file)
|
131 |
-
text = clean_text(text)
|
132 |
-
chunks = chunk_text(text)
|
133 |
-
n_chunks = len(chunks)
|
134 |
-
|
135 |
-
keyword_bitmaps = {}
|
136 |
-
chunk_keywords = []
|
137 |
-
for i, chunk in enumerate(chunks):
|
138 |
-
keywords = extract_keywords(chunk)
|
139 |
-
chunk_keywords.append(keywords)
|
140 |
-
for kw in keywords:
|
141 |
-
if kw not in keyword_bitmaps:
|
142 |
-
keyword_bitmaps[kw] = np.zeros(n_chunks, dtype=bool)
|
143 |
-
keyword_bitmaps[kw][i] = 1
|
144 |
-
|
145 |
-
chunk_embeddings = get_chunk_embeddings(chunks)
|
146 |
-
all_keywords = set().union(*chunk_keywords)
|
147 |
-
return chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords
|
148 |
-
|
149 |
-
def search_relevant_chunks(query, chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords, top_k=5):
|
150 |
-
query_keywords = extract_keywords(query)
|
151 |
-
corrected_query_keywords = correct_keywords(query_keywords, all_keywords)
|
152 |
-
|
153 |
-
matched_bitmap = np.zeros(len(chunks), dtype=bool)
|
154 |
-
for keyword in corrected_query_keywords:
|
155 |
-
if keyword in keyword_bitmaps:
|
156 |
-
matched_bitmap |= keyword_bitmaps[keyword]
|
157 |
-
|
158 |
-
matched_chunk_indices = set(np.where(matched_bitmap)[0])
|
159 |
-
chunk_scores = {idx: len(corrected_query_keywords & chunk_keywords[idx]) for idx in matched_chunk_indices}
|
160 |
-
matched_chunks = [(chunks[idx], idx) for idx in sorted(chunk_scores, key=chunk_scores.get, reverse=True)]
|
161 |
-
|
162 |
-
if len(matched_chunks) >= top_k:
|
163 |
-
return [chunk for chunk, _ in matched_chunks[:top_k]]
|
164 |
-
|
165 |
-
remaining_slots = top_k - len(matched_chunks)
|
166 |
-
unmatched_indices = [i for i in range(len(chunks)) if i not in matched_chunk_indices]
|
167 |
-
query_embedding = sbert_model.encode(query, convert_to_tensor=True)
|
168 |
-
similarities = [util.pytorch_cos_sim(query_embedding, chunk_emb).item() for chunk_emb in chunk_embeddings]
|
169 |
-
top_indices = sorted(unmatched_indices, key=lambda i: similarities[i], reverse=True)[:remaining_slots]
|
170 |
-
similar_chunks = [chunks[i] for i in top_indices]
|
171 |
-
return [chunk for chunk, _ in matched_chunks] + similar_chunks[:top_k]
|
172 |
-
|
173 |
-
# Mistral API query (unchanged)
|
174 |
-
def query_mistral(prompt, MISTRAL_API_KEY):
|
175 |
-
payload = {"model": "mistral-large-latest", "messages": [{"role": "user", "content": prompt}]}
|
176 |
-
curl_command = [
|
177 |
-
"curl", "--location", "https://api.mistral.ai/v1/chat/completions",
|
178 |
-
"--header", "Content-Type: application/json",
|
179 |
-
"--header", "Accept: application/json",
|
180 |
-
"--header", f"Authorization: Bearer {MISTRAL_API_KEY}",
|
181 |
-
"--data", json.dumps(payload)
|
182 |
-
]
|
183 |
-
response = subprocess.run(curl_command, capture_output=True, text=True)
|
184 |
-
if response.returncode == 0:
|
185 |
-
try:
|
186 |
-
response_json = json.loads(response.stdout)
|
187 |
-
return response_json['choices'][0]['message']['content']
|
188 |
-
except (KeyError, json.JSONDecodeError):
|
189 |
-
return "Error parsing the LLM response."
|
190 |
-
return f"Error: {response.stderr}"
|
191 |
-
|
192 |
-
# Streamlit app
|
193 |
-
st.title("PDF Query System")
|
194 |
-
st.write("Upload PDFs and ask questions about their content.")
|
195 |
-
|
196 |
-
# File uploader for multiple PDFs
|
197 |
-
uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True)
|
198 |
-
|
199 |
-
# Store processed PDFs in session state
|
200 |
-
if 'processed_pdfs' not in st.session_state:
|
201 |
-
st.session_state.processed_pdfs = {}
|
202 |
-
|
203 |
-
# Process uploaded PDFs
|
204 |
-
if uploaded_files:
|
205 |
-
for pdf_file in uploaded_files:
|
206 |
-
if pdf_file.name not in st.session_state.processed_pdfs:
|
207 |
-
with st.spinner(f"Processing {pdf_file.name}..."):
|
208 |
-
start_time = time.time()
|
209 |
-
chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords = process_pdf(pdf_file)
|
210 |
-
st.session_state.processed_pdfs[pdf_file.name] = {
|
211 |
-
"chunks": chunks,
|
212 |
-
"chunk_embeddings": chunk_embeddings,
|
213 |
-
"keyword_bitmaps": keyword_bitmaps,
|
214 |
-
"chunk_keywords": chunk_keywords,
|
215 |
-
"all_keywords": all_keywords
|
216 |
-
}
|
217 |
-
end_time = time.time()
|
218 |
-
st.success(f"Processed {pdf_file.name} in {end_time - start_time:.4f} seconds")
|
219 |
-
|
220 |
-
# Query input
|
221 |
-
query = st.text_input("Enter your query:")
|
222 |
-
|
223 |
-
# Mistral API key from environment variable (recommended for security)
|
224 |
-
MISTRAL_API_KEY = os.environ.get("MISTRAL_API_KEY", "S3vzsvK7rP5in24joHgL55dVCjqYSi1F") # Fallback for local testing
|
225 |
-
|
226 |
-
if st.button("Search") and query and st.session_state.processed_pdfs:
|
227 |
-
with st.spinner("Searching..."):
|
228 |
-
all_relevant_chunks = []
|
229 |
-
for pdf_name, data in st.session_state.processed_pdfs.items():
|
230 |
-
start_search = time.time()
|
231 |
-
relevant_chunks = search_relevant_chunks(
|
232 |
-
query, data["chunks"], data["chunk_embeddings"],
|
233 |
-
data["keyword_bitmaps"], data["chunk_keywords"], data["all_keywords"]
|
234 |
-
)
|
235 |
-
end_search = time.time()
|
236 |
-
all_relevant_chunks.extend(relevant_chunks)
|
237 |
-
st.write(f"Search time for {pdf_name}: {end_search - start_search:.4f} seconds")
|
238 |
-
|
239 |
-
context = "\n".join(all_relevant_chunks)
|
240 |
-
start_response_time = time.time()
|
241 |
-
llm_prompt = f"Only Based on the following context, answer the query:\n{context}\n\nQuery: {query}"
|
242 |
-
response = query_mistral(llm_prompt, MISTRAL_API_KEY)
|
243 |
-
end_response_time = time.time()
|
244 |
-
|
245 |
-
st.subheader("Response:")
|
246 |
-
st.write(response)
|
247 |
-
st.write(f"Response time: {end_response_time - start_response_time:.4f} seconds")
|
248 |
-
elif st.button("Search") and not st.session_state.processed_pdfs:
|
249 |
-
st.warning("Please upload at least one PDF before searching.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import pdfplumber
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import torch
|
5 |
+
from typing import List
|
6 |
+
from difflib import ndiff
|
7 |
+
|
8 |
+
# Load SBERT model
|
9 |
+
model = SentenceTransformer('paraphrase-mpnet-base-v2')
|
10 |
+
|
11 |
+
st.set_page_config(page_title="PDF Difference Viewer", layout="wide")
|
12 |
+
st.title("π PDF Semantic Difference Viewer")
|
13 |
+
|
14 |
+
# Function to extract text from PDF
|
15 |
+
def extract_text(pdf_file) -> List[str]:
|
16 |
+
with pdfplumber.open(pdf_file) as pdf:
|
17 |
+
text = ""
|
18 |
+
for page in pdf.pages:
|
19 |
+
text += page.extract_text() + "\n"
|
20 |
+
return [para.strip() for para in text.split("\n") if para.strip()]
|
21 |
+
|
22 |
+
# Function to compare text semantically
|
23 |
+
def compare_texts(text_a: List[str], text_b: List[str], threshold_mod=0.85, threshold_add_del=0.6):
|
24 |
+
results = []
|
25 |
+
emb_a = model.encode(text_a, convert_to_tensor=True)
|
26 |
+
emb_b = model.encode(text_b, convert_to_tensor=True)
|
27 |
+
|
28 |
+
matched_b = set()
|
29 |
+
add_count = del_count = mod_count = 0
|
30 |
+
|
31 |
+
for idx_a, a_vec in enumerate(emb_a):
|
32 |
+
scores = util.cos_sim(a_vec, emb_b)[0]
|
33 |
+
best_match_idx = torch.argmax(scores).item()
|
34 |
+
best_score = scores[best_match_idx].item()
|
35 |
+
|
36 |
+
if best_score >= threshold_mod:
|
37 |
+
results.append(("modified", text_a[idx_a], text_b[best_match_idx]))
|
38 |
+
matched_b.add(best_match_idx)
|
39 |
+
mod_count += 1
|
40 |
+
elif best_score < threshold_add_del:
|
41 |
+
results.append(("removed", text_a[idx_a], ""))
|
42 |
+
del_count += 1
|
43 |
+
|
44 |
+
# Find additions
|
45 |
+
for idx_b, para_b in enumerate(text_b):
|
46 |
+
if idx_b not in matched_b:
|
47 |
+
results.append(("added", "", para_b))
|
48 |
+
add_count += 1
|
49 |
+
|
50 |
+
return results, add_count, del_count, mod_count
|
51 |
+
|
52 |
+
# Streamlit file uploader
|
53 |
+
col1, col2 = st.columns(2)
|
54 |
+
with col1:
|
55 |
+
pdf1 = st.file_uploader("Upload First PDF", type="pdf")
|
56 |
+
with col2:
|
57 |
+
pdf2 = st.file_uploader("Upload Second PDF", type="pdf")
|
58 |
+
|
59 |
+
if pdf1 and pdf2:
|
60 |
+
text_a = extract_text(pdf1)
|
61 |
+
text_b = extract_text(pdf2)
|
62 |
+
|
63 |
+
st.success("PDFs uploaded and processed. Comparing...")
|
64 |
+
results, add_count, del_count, mod_count = compare_texts(text_a, text_b)
|
65 |
+
|
66 |
+
st.subheader("π Summary Report")
|
67 |
+
st.markdown(f"- β
**Added**: {add_count}\n- β **Removed**: {del_count}\n- βοΈ **Modified**: {mod_count}")
|
68 |
+
|
69 |
+
st.subheader("π Detailed Comparison")
|
70 |
+
for tag, old, new in results:
|
71 |
+
if tag == "added":
|
72 |
+
st.markdown(f"<div style='background-color:#d4edda;padding:10px;border-radius:5px;'>β
<b>Added:</b> {new}</div>", unsafe_allow_html=True)
|
73 |
+
elif tag == "removed":
|
74 |
+
st.markdown(f"<div style='background-color:#f8d7da;padding:10px;border-radius:5px;'>β <b>Removed:</b> {old}</div>", unsafe_allow_html=True)
|
75 |
+
elif tag == "modified":
|
76 |
+
st.markdown(f"<div style='background-color:#fff3cd;padding:10px;border-radius:5px;'>βοΈ <b>Modified:</b><br><i>Old:</i> {old}<br><i>New:</i> {new}</div>", unsafe_allow_html=True)
|
77 |
+
else:
|
78 |
+
st.info("Please upload two PDF files to begin comparison.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|