Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import nltk
|
3 |
+
import fitz
|
4 |
+
import spacy
|
5 |
+
import json
|
6 |
+
import subprocess
|
7 |
+
import re
|
8 |
+
import numpy as np
|
9 |
+
from summa import keywords
|
10 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
11 |
+
from sentence_transformers import SentenceTransformer, util
|
12 |
+
import time
|
13 |
+
|
14 |
+
# Download required NLTK data
|
15 |
+
nltk.download('punkt_tab', quiet=True)
|
16 |
+
nltk.download('stopwords', quiet=True)
|
17 |
+
|
18 |
+
# Load models
|
19 |
+
nlp = spacy.load("en_core_web_sm")
|
20 |
+
sbert_model = SentenceTransformer("paraphrase-MiniLM-L6-v2")
|
21 |
+
|
22 |
+
CHARS_TO_REMOVE = "(){},;-'\":‘’“”"
|
23 |
+
|
24 |
+
# Text processing functions (unchanged from your code)
|
25 |
+
def clean_text(text):
|
26 |
+
text = "".join(char if char not in CHARS_TO_REMOVE else " " for char in text)
|
27 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
28 |
+
return text
|
29 |
+
|
30 |
+
def extract_text_from_pdf(pdf_file):
|
31 |
+
try:
|
32 |
+
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
33 |
+
text = "\n".join(page.get_text("text") for page in doc)
|
34 |
+
return text.strip()
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Error reading PDF: {e}")
|
37 |
+
return ""
|
38 |
+
|
39 |
+
def custom_sent_tokenize(text):
|
40 |
+
sentence_endings = re.compile(r'(?<!\b[A-Z])(?<!\b[A-Z]\.)(?<!\b[A-Z]\.[A-Z])(?<=\.)\s+')
|
41 |
+
sentences = sentence_endings.split(text)
|
42 |
+
return [s.strip() for s in sentences if s.strip()]
|
43 |
+
|
44 |
+
def chunk_text(text, chunk_size=15, max_words=150, overlap=10):
|
45 |
+
sentences = custom_sent_tokenize(text)
|
46 |
+
chunks = []
|
47 |
+
i = 0
|
48 |
+
while i < len(sentences):
|
49 |
+
chunk = sentences[i:i + chunk_size]
|
50 |
+
chunk_text = " ".join(chunk)
|
51 |
+
words = word_tokenize(chunk_text)
|
52 |
+
if len(words) > max_words:
|
53 |
+
chunk.pop()
|
54 |
+
chunk_text = " ".join(chunk)
|
55 |
+
if chunks:
|
56 |
+
prev_words = word_tokenize(chunks[-1])[-overlap:]
|
57 |
+
chunk_text = " ".join(prev_words) + " " + chunk_text
|
58 |
+
chunks.append(chunk_text)
|
59 |
+
i += chunk_size
|
60 |
+
return chunks
|
61 |
+
|
62 |
+
# Keyword extraction functions (unchanged)
|
63 |
+
def normalize_text(text):
|
64 |
+
return text.lower().strip()
|
65 |
+
|
66 |
+
def lemmatize_keywords(keywords_list):
|
67 |
+
doc = nlp(" ".join(keywords_list))
|
68 |
+
return {token.lemma_ for token in doc if token.is_alpha}
|
69 |
+
|
70 |
+
def extract_keywords(chunk):
|
71 |
+
doc = nlp(chunk)
|
72 |
+
ner_keywords = {normalize_text(ent.text) for ent in doc.ents}
|
73 |
+
singlerank_keywords = {normalize_text(kw) for kw in keywords.keywords(chunk, scores=False).split("\n")}
|
74 |
+
all_tokens = {normalize_text(token.text) for token in doc if token.is_alpha}
|
75 |
+
all_keywords = ner_keywords | singlerank_keywords | all_tokens
|
76 |
+
return lemmatize_keywords(all_keywords)
|
77 |
+
|
78 |
+
# Embedding generation (unchanged)
|
79 |
+
def get_chunk_embeddings(chunks):
|
80 |
+
return [sbert_model.encode(chunk, convert_to_tensor=True) for chunk in chunks]
|
81 |
+
|
82 |
+
# Levenshtein distance and keyword correction (unchanged)
|
83 |
+
def levenshtein_distance(s1, s2):
|
84 |
+
if len(s1) < len(s2):
|
85 |
+
return levenshtein_distance(s2, s1)
|
86 |
+
if len(s2) == 0:
|
87 |
+
return len(s1)
|
88 |
+
previous_row = range(len(s2) + 1)
|
89 |
+
for i, c1 in enumerate(s1):
|
90 |
+
current_row = [i + 1]
|
91 |
+
for j, c2 in enumerate(s2):
|
92 |
+
insertions = previous_row[j + 1] + 1
|
93 |
+
deletions = current_row[j] + 1
|
94 |
+
substitutions = previous_row[j] + (c1 != c2)
|
95 |
+
current_row.append(min(insertions, deletions, substitutions))
|
96 |
+
previous_row = current_row
|
97 |
+
return previous_row[-1]
|
98 |
+
|
99 |
+
def correct_keywords(query_keywords, stored_keywords, threshold=2):
|
100 |
+
corrected_keywords = set()
|
101 |
+
for qk in query_keywords:
|
102 |
+
if qk in stored_keywords:
|
103 |
+
corrected_keywords.add(qk)
|
104 |
+
else:
|
105 |
+
min_dist = float('inf')
|
106 |
+
best_match = qk
|
107 |
+
for sk in stored_keywords:
|
108 |
+
dist = levenshtein_distance(qk, sk)
|
109 |
+
if dist < min_dist:
|
110 |
+
min_dist = dist
|
111 |
+
best_match = sk
|
112 |
+
if min_dist <= threshold:
|
113 |
+
corrected_keywords.add(best_match)
|
114 |
+
else:
|
115 |
+
corrected_keywords.add(qk)
|
116 |
+
return corrected_keywords
|
117 |
+
|
118 |
+
# Bit Vector-based search and retrieval (adapted for multiple PDFs)
|
119 |
+
def process_pdf(pdf_file):
|
120 |
+
text = extract_text_from_pdf(pdf_file)
|
121 |
+
text = clean_text(text)
|
122 |
+
chunks = chunk_text(text)
|
123 |
+
n_chunks = len(chunks)
|
124 |
+
|
125 |
+
keyword_bitmaps = {}
|
126 |
+
chunk_keywords = []
|
127 |
+
for i, chunk in enumerate(chunks):
|
128 |
+
keywords = extract_keywords(chunk)
|
129 |
+
chunk_keywords.append(keywords)
|
130 |
+
for kw in keywords:
|
131 |
+
if kw not in keyword_bitmaps:
|
132 |
+
keyword_bitmaps[kw] = np.zeros(n_chunks, dtype=bool)
|
133 |
+
keyword_bitmaps[kw][i] = 1
|
134 |
+
|
135 |
+
chunk_embeddings = get_chunk_embeddings(chunks)
|
136 |
+
all_keywords = set().union(*chunk_keywords)
|
137 |
+
return chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords
|
138 |
+
|
139 |
+
def search_relevant_chunks(query, chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords, top_k=5):
|
140 |
+
query_keywords = extract_keywords(query)
|
141 |
+
corrected_query_keywords = correct_keywords(query_keywords, all_keywords)
|
142 |
+
|
143 |
+
matched_bitmap = np.zeros(len(chunks), dtype=bool)
|
144 |
+
for keyword in corrected_query_keywords:
|
145 |
+
if keyword in keyword_bitmaps:
|
146 |
+
matched_bitmap |= keyword_bitmaps[keyword]
|
147 |
+
|
148 |
+
matched_chunk_indices = set(np.where(matched_bitmap)[0])
|
149 |
+
chunk_scores = {idx: len(corrected_query_keywords & chunk_keywords[idx]) for idx in matched_chunk_indices}
|
150 |
+
matched_chunks = [(chunks[idx], idx) for idx in sorted(chunk_scores, key=chunk_scores.get, reverse=True)]
|
151 |
+
|
152 |
+
if len(matched_chunks) >= top_k:
|
153 |
+
return [chunk for chunk, _ in matched_chunks[:top_k]]
|
154 |
+
|
155 |
+
remaining_slots = top_k - len(matched_chunks)
|
156 |
+
unmatched_indices = [i for i in range(len(chunks)) if i not in matched_chunk_indices]
|
157 |
+
query_embedding = sbert_model.encode(query, convert_to_tensor=True)
|
158 |
+
similarities = [util.pytorch_cos_sim(query_embedding, chunk_emb).item() for chunk_emb in chunk_embeddings]
|
159 |
+
top_indices = sorted(unmatched_indices, key=lambda i: similarities[i], reverse=True)[:remaining_slots]
|
160 |
+
similar_chunks = [chunks[i] for i in top_indices]
|
161 |
+
return [chunk for chunk, _ in matched_chunks] + similar_chunks[:top_k]
|
162 |
+
|
163 |
+
# Mistral API query (unchanged)
|
164 |
+
def query_mistral(prompt, MISTRAL_API_KEY):
|
165 |
+
payload = {"model": "mistral-large-latest", "messages": [{"role": "user", "content": prompt}]}
|
166 |
+
curl_command = [
|
167 |
+
"curl", "--location", "https://api.mistral.ai/v1/chat/completions",
|
168 |
+
"--header", "Content-Type: application/json",
|
169 |
+
"--header", "Accept: application/json",
|
170 |
+
"--header", f"Authorization: Bearer {MISTRAL_API_KEY}",
|
171 |
+
"--data", json.dumps(payload)
|
172 |
+
]
|
173 |
+
response = subprocess.run(curl_command, capture_output=True, text=True)
|
174 |
+
if response.returncode == 0:
|
175 |
+
try:
|
176 |
+
response_json = json.loads(response.stdout)
|
177 |
+
return response_json['choices'][0]['message']['content']
|
178 |
+
except (KeyError, json.JSONDecodeError):
|
179 |
+
return "Error parsing the LLM response."
|
180 |
+
return f"Error: {response.stderr}"
|
181 |
+
|
182 |
+
# Streamlit app
|
183 |
+
st.title("PDF Query System")
|
184 |
+
st.write("Upload PDFs and ask questions about their content.")
|
185 |
+
|
186 |
+
# File uploader for multiple PDFs
|
187 |
+
uploaded_files = st.file_uploader("Upload PDF files", type="pdf", accept_multiple_files=True)
|
188 |
+
|
189 |
+
# Store processed PDFs in session state
|
190 |
+
if 'processed_pdfs' not in st.session_state:
|
191 |
+
st.session_state.processed_pdfs = {}
|
192 |
+
|
193 |
+
# Process uploaded PDFs
|
194 |
+
if uploaded_files:
|
195 |
+
for pdf_file in uploaded_files:
|
196 |
+
if pdf_file.name not in st.session_state.processed_pdfs:
|
197 |
+
with st.spinner(f"Processing {pdf_file.name}..."):
|
198 |
+
start_time = time.time()
|
199 |
+
chunks, chunk_embeddings, keyword_bitmaps, chunk_keywords, all_keywords = process_pdf(pdf_file)
|
200 |
+
st.session_state.processed_pdfs[pdf_file.name] = {
|
201 |
+
"chunks": chunks,
|
202 |
+
"chunk_embeddings": chunk_embeddings,
|
203 |
+
"keyword_bitmaps": keyword_bitmaps,
|
204 |
+
"chunk_keywords": chunk_keywords,
|
205 |
+
"all_keywords": all_keywords
|
206 |
+
}
|
207 |
+
end_time = time.time()
|
208 |
+
st.success(f"Processed {pdf_file.name} in {end_time - start_time:.4f} seconds")
|
209 |
+
|
210 |
+
# Query input
|
211 |
+
query = st.text_input("Enter your query:")
|
212 |
+
|
213 |
+
# Mistral API key (you may want to secure this differently in production)
|
214 |
+
MISTRAL_API_KEY = "S3vzsvK7rP5in24joHgL55dVCjqYSi1F"
|
215 |
+
|
216 |
+
if st.button("Search") and query and st.session_state.processed_pdfs:
|
217 |
+
with st.spinner("Searching..."):
|
218 |
+
all_relevant_chunks = []
|
219 |
+
for pdf_name, data in st.session_state.processed_pdfs.items():
|
220 |
+
start_search = time.time()
|
221 |
+
relevant_chunks = search_relevant_chunks(
|
222 |
+
query, data["chunks"], data["chunk_embeddings"],
|
223 |
+
data["keyword_bitmaps"], data["chunk_keywords"], data["all_keywords"]
|
224 |
+
)
|
225 |
+
end_search = time.time()
|
226 |
+
all_relevant_chunks.extend(relevant_chunks)
|
227 |
+
st.write(f"Search time for {pdf_name}: {end_search - start_search:.4f} seconds")
|
228 |
+
|
229 |
+
context = "\n".join(all_relevant_chunks)
|
230 |
+
start_response_time = time.time()
|
231 |
+
llm_prompt = f"Only Based on the following context, answer the query:\n{context}\n\nQuery: {query}"
|
232 |
+
response = query_mistral(llm_prompt, MISTRAL_API_KEY)
|
233 |
+
end_response_time = time.time()
|
234 |
+
|
235 |
+
st.subheader("Response:")
|
236 |
+
st.write(response)
|
237 |
+
st.write(f"Response time: {end_response_time - start_response_time:.4f} seconds")
|
238 |
+
elif st.button("Search") and not st.session_state.processed_pdfs:
|
239 |
+
st.warning("Please upload at least one PDF before searching.")
|