Spaces:
Runtime error
Runtime error
Create app.py
Browse filesAutomatic disease mention extraction is a relevant task due to its various applications in the medical field. During the last decade, many related works have been published, which have accelerated the progress of this research area, but most of them have been carried out in English. In this work, we propose a deep-learning baseline for this task in Spanish. We report an approach based on transfer learning using multilingual BERT and a straightforward post-processing to tackle the problem. Our system does not use any external resources and rely only on efficient fine tuning, which makes it a fair baseline (Micro F1 = 0.5456) for disease mention identification in Spanish using transformer-based models.
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
examples = [["Paciente var贸n de 35 a帽os con tumoraci贸n en polo superior de teste derecho hallada de manera casual durante una autoexploraci贸n, motivo por el cual acude a consulta de urolog铆a donde se realiza exploraci贸n f铆sica, apreciando masa de 1cm aproximado de di谩metro dependiente de epid铆dimo, y ecograf铆a testicular, que se informa como lesi贸n nodular s贸lida en cabeza de epid铆dimo derecho."], ["Confirmando masa nodular, siendo el tumor adenomatoide de epid铆dimo la primera posibilidad diagn贸stica."], ["Se decide, en los dos casos, resecci贸n quir煤rgica de tumoraci贸n nodular en cola epid铆dimo derecho, sin realizaci贸n de orquiectom铆a posterior."], [""]]
|
4 |
+
|
5 |
+
gr.Interface.load("ajtamayoh/NER_EHR_Spanish_model_Mulitlingual_BERT").launch();
|