Aidan Phillips
commited on
Commit
·
36599ed
1
Parent(s):
77a9ebf
frontend
Browse files- app.py +84 -0
- categories/accuracy.py +4 -1
- requirements.txt +2 -1
- scorer.ipynb +2 -2
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from categories.accuracy import *
|
6 |
+
|
7 |
+
|
8 |
+
def response_generator(prompt):
|
9 |
+
source = st.session_state.german
|
10 |
+
acc = accuracy(source, prompt)
|
11 |
+
|
12 |
+
response = "Your response is: " + str(acc["score"]) + "\n"
|
13 |
+
|
14 |
+
if acc["errors"]:
|
15 |
+
response += "Your errors are:\n"
|
16 |
+
|
17 |
+
for error in acc["errors"]:
|
18 |
+
response += f" - {error['message']}\n"
|
19 |
+
|
20 |
+
lines = response.split("\n")
|
21 |
+
for line in lines:
|
22 |
+
for word in line.split():
|
23 |
+
yield word + " "
|
24 |
+
time.sleep(0.05)
|
25 |
+
# After each line, yield a newline character or trigger a line break in Markdown
|
26 |
+
yield "\n"
|
27 |
+
|
28 |
+
|
29 |
+
def translation_generator():
|
30 |
+
st.session_state.german = "Danke shoen."
|
31 |
+
|
32 |
+
message = (
|
33 |
+
f"Please translate the following sentence into English:"
|
34 |
+
f" {st.session_state.german}"
|
35 |
+
)
|
36 |
+
|
37 |
+
lines = message.split("\n")
|
38 |
+
for line in lines:
|
39 |
+
for word in line.split():
|
40 |
+
yield word + " "
|
41 |
+
time.sleep(0.05)
|
42 |
+
# After each line, yield a newline character or trigger a line break in Markdown
|
43 |
+
yield "\n"
|
44 |
+
|
45 |
+
|
46 |
+
st.title("Translation bot")
|
47 |
+
|
48 |
+
# Initialize chat history
|
49 |
+
if "messages" not in st.session_state:
|
50 |
+
st.session_state.messages = [
|
51 |
+
{
|
52 |
+
"role": "assistant",
|
53 |
+
"content": (
|
54 |
+
"Hello! I am a translation bot. Please translate the following"
|
55 |
+
" sentence into English: 'Das ist ein Test.'"
|
56 |
+
),
|
57 |
+
}
|
58 |
+
]
|
59 |
+
st.session_state.german = "Das ist ein Test."
|
60 |
+
|
61 |
+
# Display chat messages from history on app rerun
|
62 |
+
for message in st.session_state.messages:
|
63 |
+
with st.chat_message(message["role"]):
|
64 |
+
st.markdown(message["content"])
|
65 |
+
|
66 |
+
# Accept user input
|
67 |
+
if prompt := st.chat_input("What is up?"):
|
68 |
+
# Add user message to chat history
|
69 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
70 |
+
# Display user message in chat message container
|
71 |
+
with st.chat_message("user"):
|
72 |
+
st.markdown(prompt)
|
73 |
+
|
74 |
+
# Display assistant response in chat message container
|
75 |
+
with st.chat_message("assistant"):
|
76 |
+
response = st.write_stream(response_generator(prompt))
|
77 |
+
|
78 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
79 |
+
|
80 |
+
with st.chat_message("assistant"):
|
81 |
+
message = st.write_stream(translation_generator())
|
82 |
+
|
83 |
+
st.session_state.messages.append({"role": "assistant", "content": message})
|
84 |
+
# Add assistant response to chat history
|
categories/accuracy.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import string
|
2 |
|
3 |
import torch
|
|
|
4 |
from scipy.spatial.distance import cosine
|
5 |
from simalign import SentenceAligner
|
6 |
from transformers import AutoModel, AutoTokenizer
|
@@ -97,7 +98,9 @@ def __bertscore_to_percentage(similarity: float) -> float:
|
|
97 |
int: A score from 0 to 100.
|
98 |
"""
|
99 |
# Scale the similarity score from [-1, 1] range to [0, 100] (rarely negative)
|
100 |
-
|
|
|
|
|
101 |
return round(scaled_score, 2)
|
102 |
|
103 |
|
|
|
1 |
import string
|
2 |
|
3 |
import torch
|
4 |
+
import numpy as np
|
5 |
from scipy.spatial.distance import cosine
|
6 |
from simalign import SentenceAligner
|
7 |
from transformers import AutoModel, AutoTokenizer
|
|
|
98 |
int: A score from 0 to 100.
|
99 |
"""
|
100 |
# Scale the similarity score from [-1, 1] range to [0, 100] (rarely negative)
|
101 |
+
# Logistic function: 100 / (1 + exp(-k * (x - 0.5))), where k controls steepness
|
102 |
+
k = 35 # Steepness parameter - higher values create a sharper transition
|
103 |
+
scaled_score = 100 / (1 + np.exp(-k * (similarity - 0.65)))
|
104 |
return round(scaled_score, 2)
|
105 |
|
106 |
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ language_tool_python
|
|
2 |
transformers
|
3 |
torch
|
4 |
wordfreq
|
5 |
-
simalign
|
|
|
|
2 |
transformers
|
3 |
torch
|
4 |
wordfreq
|
5 |
+
simalign
|
6 |
+
streamlit
|
scorer.ipynb
CHANGED
@@ -81,14 +81,14 @@
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
-
"execution_count":
|
85 |
"metadata": {},
|
86 |
"outputs": [
|
87 |
{
|
88 |
"name": "stdout",
|
89 |
"output_type": "stream",
|
90 |
"text": [
|
91 |
-
"Fluency Score: 76.
|
92 |
"Accuracy Score: 24.45\n"
|
93 |
]
|
94 |
}
|
|
|
81 |
},
|
82 |
{
|
83 |
"cell_type": "code",
|
84 |
+
"execution_count": 5,
|
85 |
"metadata": {},
|
86 |
"outputs": [
|
87 |
{
|
88 |
"name": "stdout",
|
89 |
"output_type": "stream",
|
90 |
"text": [
|
91 |
+
"Fluency Score: 76.62\n",
|
92 |
"Accuracy Score: 24.45\n"
|
93 |
]
|
94 |
}
|