Remove spacy download step; use pip-installed model
Browse files- categories/accuracy.py +1 -1
- categories/fluency.py +1 -1
categories/accuracy.py
CHANGED
@@ -10,7 +10,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
10 |
# setup global variables on import (bad practice, but whatever)
|
11 |
# --------------------------------------------------------------
|
12 |
|
13 |
-
aligner = SentenceAligner(model="
|
14 |
|
15 |
de_encoder = LaserEncoderPipeline(lang="deu_Latn")
|
16 |
en_encoder = LaserEncoderPipeline(lang="eng_Latn")
|
|
|
10 |
# setup global variables on import (bad practice, but whatever)
|
11 |
# --------------------------------------------------------------
|
12 |
|
13 |
+
aligner = SentenceAligner(model="xlm-roberta-base", layer=6)
|
14 |
|
15 |
de_encoder = LaserEncoderPipeline(lang="deu_Latn")
|
16 |
en_encoder = LaserEncoderPipeline(lang="eng_Latn")
|
categories/fluency.py
CHANGED
@@ -12,7 +12,7 @@ from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
12 |
tool = language_tool_python.LanguageTool("en-US")
|
13 |
|
14 |
# masked language model and tokenizer from huggingface
|
15 |
-
model_name = "
|
16 |
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
17 |
model.eval()
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name) # tokenizer
|
|
|
12 |
tool = language_tool_python.LanguageTool("en-US")
|
13 |
|
14 |
# masked language model and tokenizer from huggingface
|
15 |
+
model_name = "xlm-roberta-base"
|
16 |
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
17 |
model.eval()
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_name) # tokenizer
|