diff_models_hw6 / app.py
akaUNik's picture
Upload 2 files
41efa6c verified
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from diffusers import (
DiffusionPipeline,
StableDiffusionControlNetPipeline,
ControlNetModel
)
from peft import PeftModel
device = "cuda" if torch.cuda.is_available() else "cpu"
LORA_MODEL = "akaUNik/hw5-homm3-lora-15"
LORA_BASE_MODEL = "runwayml/stable-diffusion-v1-5"
# Model list including LoRA model
MODEL_LIST = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/sdxl-turbo",
"stabilityai/stable-diffusion-2-1",
LORA_MODEL, # LoRA model option
]
# ControlNet modes list with aliases
CONTROLNET_MODES = {
"Canny Edge Detection": "lllyasviel/control_v11p_sd15_canny",
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
"Inpainting": "lllyasviel/control_v11p_sd15_inpaint",
"Multi-Level Line Segments": "lllyasviel/control_v11p_sd15_mlsd",
"Depth Estimation": "lllyasviel/control_v11f1p_sd15_depth",
"Surface Normal Estimation": "lllyasviel/control_v11p_sd15_normalbae",
"Image Segmentation": "lllyasviel/control_v11p_sd15_seg",
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
"Anime Line Art": "lllyasviel/control_v11p_sd15_lineart_anime",
"Human Pose Estimation": "lllyasviel/control_v11p_sd15_openpose",
"Scribble-Based Generation": "lllyasviel/control_v11p_sd15_scribble",
"Soft Edge Generation": "lllyasviel/control_v11p_sd15_softedge",
"Image Shuffling": "lllyasviel/control_v11e_sd15_shuffle",
"Image Tiling": "lllyasviel/control_v11f1e_sd15_tile",
}
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Cache to avoid re-initializing pipelines repeatedly
model_cache = {}
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
def infer(
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
controlnet_enable,
controlnet_mode,
controlnet_strength,
controlnet_image,
ip_adapter_enable,
ip_adapter_scale,
ip_adapter_image,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Cache
# if (model_id, controlnet_enable, controlnet_image, controlnet_mode) in model_cache:
# pipe = model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)]
# else:
pipe = None
if controlnet_enable and controlnet_image:
controlnet_model = ControlNetModel.from_pretrained(
CONTROLNET_MODES.get(controlnet_mode),
torch_dtype=torch_dtype
)
if model_id == LORA_MODEL:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
LORA_BASE_MODEL,
controlnet=controlnet_model,
torch_dtype=torch_dtype
)
else:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=controlnet_model,
torch_dtype=torch_dtype
)
else:
if model_id == LORA_MODEL:
# Use the specified base model for your LoRA adapter.
pipe = DiffusionPipeline.from_pretrained(
LORA_BASE_MODEL,
torch_dtype=torch_dtype
)
# Load the LoRA weights
pipe.unet = PeftModel.from_pretrained(
pipe.unet,
model_id,
subfolder="unet",
torch_dtype=torch_dtype
)
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder,
model_id,
subfolder="text_encoder",
torch_dtype=torch_dtype
)
else:
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype
)
if ip_adapter_enable:
pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name="ip-adapter-plus_sd15.bin"
)
pipe.set_ip_adapter_scale(ip_adapter_scale)
pipe.safety_checker = None
pipe.to(device)
# model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)] = pipe
image = pipe(
prompt=prompt,
image=controlnet_image if controlnet_enable else None,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lora_scale},
controlnet_conditioning_scale=controlnet_strength,
ip_adapter_image=ip_adapter_image if ip_adapter_enable else None
).images[0]
return image, seed
# @title Gradio
examples = [
"homm3_spell_icon midivial sticker of a cartoon character of a man in a lab coat and glasses, old lady screaming and laughing",
"homm3_spell_icon midivial sticker of a cartoon man with a mustache and a hat on, portrait bender from futurama, telegram sticker",
"homm3_spell_icon midivial sticker of a cartoon character with a gun in his hand",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
# Dropdown to select the model from Hugging Face
model_id = gr.Dropdown(
label="Model",
choices=MODEL_LIST,
value=MODEL_LIST[0], # Default model
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42, # Default seed
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.5,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
# New slider for LoRA scale.
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Adjust the influence of the LoRA weights",
)
# --- ControlNet Settings ---
with gr.Accordion("ControlNet Settings", open=False):
controlnet_enable = gr.Checkbox(
label="Enable ControlNet",
value=False
)
with gr.Group(visible=False) as controlnet_group:
controlnet_mode = gr.Dropdown(
label="ControlNet Mode",
choices=list(CONTROLNET_MODES.keys()),
value=list(CONTROLNET_MODES.keys())[0],
)
controlnet_strength = gr.Slider(
label="ControlNet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.7,
)
controlnet_image = gr.Image(
label="ControlNet Image",
type="pil"
)
def show_controlnet_options(enable):
return {controlnet_group: gr.update(visible=enable)}
controlnet_enable.change(
fn=show_controlnet_options,
inputs=controlnet_enable,
outputs=controlnet_group,
)
# --- IP-adapter Settings ---
with gr.Accordion("IP-adapter Settings", open=False):
ip_adapter_enable = gr.Checkbox(
label="Enable IP-adapter",
value=False
)
with gr.Group(visible=False) as ip_adapter_group:
ip_adapter_scale = gr.Slider(
label="IP-adapter Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0
)
ip_adapter_image = gr.Image(
label="IP-adapter Image",
type="pil"
)
# Show/hide IP-adapter parameters when checkbox is toggled
def show_ip_adapter_options(enable):
return {ip_adapter_group: gr.update(visible=enable)}
ip_adapter_enable.change(
fn=show_ip_adapter_options,
inputs=ip_adapter_enable,
outputs=ip_adapter_group,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
controlnet_enable,
controlnet_mode,
controlnet_strength,
controlnet_image,
ip_adapter_enable,
ip_adapter_scale,
ip_adapter_image,
],
outputs=[result, seed],
)
# @title Run
if __name__ == "__main__":
demo.launch(debug=True) # show errors in colab notebook