Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
StableDiffusionControlNetPipeline, | |
ControlNetModel | |
) | |
from peft import PeftModel | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
LORA_MODEL = "akaUNik/hw5-homm3-lora-15" | |
LORA_BASE_MODEL = "runwayml/stable-diffusion-v1-5" | |
# Model list including LoRA model | |
MODEL_LIST = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/sdxl-turbo", | |
"stabilityai/stable-diffusion-2-1", | |
LORA_MODEL, # LoRA model option | |
] | |
# ControlNet modes list with aliases | |
CONTROLNET_MODES = { | |
"Canny Edge Detection": "lllyasviel/control_v11p_sd15_canny", | |
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p", | |
"Inpainting": "lllyasviel/control_v11p_sd15_inpaint", | |
"Multi-Level Line Segments": "lllyasviel/control_v11p_sd15_mlsd", | |
"Depth Estimation": "lllyasviel/control_v11f1p_sd15_depth", | |
"Surface Normal Estimation": "lllyasviel/control_v11p_sd15_normalbae", | |
"Image Segmentation": "lllyasviel/control_v11p_sd15_seg", | |
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart", | |
"Anime Line Art": "lllyasviel/control_v11p_sd15_lineart_anime", | |
"Human Pose Estimation": "lllyasviel/control_v11p_sd15_openpose", | |
"Scribble-Based Generation": "lllyasviel/control_v11p_sd15_scribble", | |
"Soft Edge Generation": "lllyasviel/control_v11p_sd15_softedge", | |
"Image Shuffling": "lllyasviel/control_v11e_sd15_shuffle", | |
"Image Tiling": "lllyasviel/control_v11f1e_sd15_tile", | |
} | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
# Cache to avoid re-initializing pipelines repeatedly | |
model_cache = {} | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 512 | |
def infer( | |
model_id, | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
controlnet_enable, | |
controlnet_mode, | |
controlnet_strength, | |
controlnet_image, | |
ip_adapter_enable, | |
ip_adapter_scale, | |
ip_adapter_image, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Cache | |
# if (model_id, controlnet_enable, controlnet_image, controlnet_mode) in model_cache: | |
# pipe = model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)] | |
# else: | |
pipe = None | |
if controlnet_enable and controlnet_image: | |
controlnet_model = ControlNetModel.from_pretrained( | |
CONTROLNET_MODES.get(controlnet_mode), | |
torch_dtype=torch_dtype | |
) | |
if model_id == LORA_MODEL: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
LORA_BASE_MODEL, | |
controlnet=controlnet_model, | |
torch_dtype=torch_dtype | |
) | |
else: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
model_id, | |
controlnet=controlnet_model, | |
torch_dtype=torch_dtype | |
) | |
else: | |
if model_id == LORA_MODEL: | |
# Use the specified base model for your LoRA adapter. | |
pipe = DiffusionPipeline.from_pretrained( | |
LORA_BASE_MODEL, | |
torch_dtype=torch_dtype | |
) | |
# Load the LoRA weights | |
pipe.unet = PeftModel.from_pretrained( | |
pipe.unet, | |
model_id, | |
subfolder="unet", | |
torch_dtype=torch_dtype | |
) | |
pipe.text_encoder = PeftModel.from_pretrained( | |
pipe.text_encoder, | |
model_id, | |
subfolder="text_encoder", | |
torch_dtype=torch_dtype | |
) | |
else: | |
pipe = DiffusionPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch_dtype | |
) | |
if ip_adapter_enable: | |
pipe.load_ip_adapter( | |
"h94/IP-Adapter", | |
subfolder="models", | |
weight_name="ip-adapter-plus_sd15.bin" | |
) | |
pipe.set_ip_adapter_scale(ip_adapter_scale) | |
pipe.safety_checker = None | |
pipe.to(device) | |
# model_cache[(model_id, controlnet_enable, controlnet_image, controlnet_mode)] = pipe | |
image = pipe( | |
prompt=prompt, | |
image=controlnet_image if controlnet_enable else None, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale}, | |
controlnet_conditioning_scale=controlnet_strength, | |
ip_adapter_image=ip_adapter_image if ip_adapter_enable else None | |
).images[0] | |
return image, seed | |
# @title Gradio | |
examples = [ | |
"homm3_spell_icon midivial sticker of a cartoon character of a man in a lab coat and glasses, old lady screaming and laughing", | |
"homm3_spell_icon midivial sticker of a cartoon man with a mustache and a hat on, portrait bender from futurama, telegram sticker", | |
"homm3_spell_icon midivial sticker of a cartoon character with a gun in his hand", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
# Dropdown to select the model from Hugging Face | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=MODEL_LIST, | |
value=MODEL_LIST[0], # Default model | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, # Default seed | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.5, | |
value=7.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, | |
) | |
# New slider for LoRA scale. | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
info="Adjust the influence of the LoRA weights", | |
) | |
# --- ControlNet Settings --- | |
with gr.Accordion("ControlNet Settings", open=False): | |
controlnet_enable = gr.Checkbox( | |
label="Enable ControlNet", | |
value=False | |
) | |
with gr.Group(visible=False) as controlnet_group: | |
controlnet_mode = gr.Dropdown( | |
label="ControlNet Mode", | |
choices=list(CONTROLNET_MODES.keys()), | |
value=list(CONTROLNET_MODES.keys())[0], | |
) | |
controlnet_strength = gr.Slider( | |
label="ControlNet Conditioning Scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.7, | |
) | |
controlnet_image = gr.Image( | |
label="ControlNet Image", | |
type="pil" | |
) | |
def show_controlnet_options(enable): | |
return {controlnet_group: gr.update(visible=enable)} | |
controlnet_enable.change( | |
fn=show_controlnet_options, | |
inputs=controlnet_enable, | |
outputs=controlnet_group, | |
) | |
# --- IP-adapter Settings --- | |
with gr.Accordion("IP-adapter Settings", open=False): | |
ip_adapter_enable = gr.Checkbox( | |
label="Enable IP-adapter", | |
value=False | |
) | |
with gr.Group(visible=False) as ip_adapter_group: | |
ip_adapter_scale = gr.Slider( | |
label="IP-adapter Scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0 | |
) | |
ip_adapter_image = gr.Image( | |
label="IP-adapter Image", | |
type="pil" | |
) | |
# Show/hide IP-adapter parameters when checkbox is toggled | |
def show_ip_adapter_options(enable): | |
return {ip_adapter_group: gr.update(visible=enable)} | |
ip_adapter_enable.change( | |
fn=show_ip_adapter_options, | |
inputs=ip_adapter_enable, | |
outputs=ip_adapter_group, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
model_id, | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale, | |
controlnet_enable, | |
controlnet_mode, | |
controlnet_strength, | |
controlnet_image, | |
ip_adapter_enable, | |
ip_adapter_scale, | |
ip_adapter_image, | |
], | |
outputs=[result, seed], | |
) | |
# @title Run | |
if __name__ == "__main__": | |
demo.launch(debug=True) # show errors in colab notebook |