akadriu commited on
Commit
001d919
·
verified ·
1 Parent(s): 864b253

Delete app.py

Browse files

from transformers import pipeline
import gradio as gr
import librosa
import numpy as np

from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline

processor = WhisperProcessor.from_pretrained("https://huggingface.co/spaces/akadriu/shqip_whisper")
model = WhisperForConditionalGeneration.from_pretrained("https://huggingface.co/spaces/akadriu/shqip_whisper")

def transcribe(audio):
audio_input, _ = librosa.load(audio, sr=16000)
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
text = transcription
return text

iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Medium Shqip",
description="Realtime demo for Sq speech recognition using a fine-tuned Whisper medium model.",
)

iface.launch()

Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- from transformers import pipeline
2
- import gradio as gr
3
- import librosa
4
- import numpy as np
5
- import os
6
-
7
- from transformers import WhisperProcessor, WhisperForConditionalGeneration
8
-
9
- hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
10
- processor = WhisperProcessor.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
11
- model = WhisperForConditionalGeneration.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
12
-
13
- def transcribe(audio):
14
- # If audio is a tuple, extract the NumPy array and the sampling rate
15
- if isinstance(audio, tuple):
16
- audio_input, sr = audio
17
- # Save the audio back to a file for playback
18
- audio_file = "temp.wav"
19
- librosa.output.write_wav(audio_file, audio_input, sr)
20
- else:
21
- # Otherwise, load the file from the path
22
- audio_file = audio
23
- audio_input, sr = librosa.load(audio_file, sr=16000)
24
-
25
- # Ensure the sample rate is what the processor expects
26
- if sr != 16000:
27
- audio_input = librosa.resample(audio_input, orig_sr=sr, target_sr=16000)
28
-
29
- # Process the audio and generate the transcription
30
- input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
31
- predicted_ids = model.generate(input_features)
32
- transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
33
- text = transcription[0] # Decode returns a list
34
-
35
- return audio_file, text
36
-
37
- iface = gr.Interface(
38
- fn=transcribe,
39
- inputs=gr.Audio(), # Audio input
40
- outputs=[gr.Audio(), "text"], # Return the audio file and transcription text
41
- title="Whisper Medium Shqip",
42
- description="Realtime demo for Sq speech recognition using a fine-tuned Whisper medium model.",
43
- )
44
-
45
- iface.launch(share=True)