Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,43 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
3 |
import librosa
|
4 |
import numpy as np
|
5 |
-
import os
|
6 |
-
|
7 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline
|
8 |
|
|
|
9 |
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
|
|
|
|
10 |
processor = WhisperProcessor.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
|
11 |
model = WhisperForConditionalGeneration.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
|
12 |
|
13 |
def transcribe(audio):
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
|
16 |
predicted_ids = model.generate(input_features)
|
17 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
18 |
-
|
19 |
-
return
|
20 |
|
|
|
21 |
iface = gr.Interface(
|
22 |
fn=transcribe,
|
23 |
-
inputs=gr.Audio(
|
24 |
outputs="text",
|
25 |
title="Whisper Medium Shqip",
|
26 |
description="Realtime demo for Sq speech recognition using a fine-tuned Whisper medium model.",
|
27 |
)
|
28 |
|
29 |
-
iface.launch(share=True)
|
30 |
|
|
|
1 |
+
import os
|
2 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import gradio as gr
|
4 |
import librosa
|
5 |
import numpy as np
|
|
|
|
|
|
|
6 |
|
7 |
+
# Fetch the token from the environment
|
8 |
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
9 |
+
|
10 |
+
# Load the processor and model using the token for authentication
|
11 |
processor = WhisperProcessor.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
|
12 |
model = WhisperForConditionalGeneration.from_pretrained("akadriu/whisper-medium-sq", token=hf_token)
|
13 |
|
14 |
def transcribe(audio):
|
15 |
+
if isinstance(audio, tuple):
|
16 |
+
# Gradio provides audio as (sample_rate, data) when using the microphone
|
17 |
+
sr, audio_input = audio
|
18 |
+
else:
|
19 |
+
# Load the file if it's a filepath
|
20 |
+
audio_input, sr = librosa.load(audio, sr=16000)
|
21 |
+
|
22 |
+
# Resample if the sample rate is not 16000
|
23 |
+
if sr != 16000:
|
24 |
+
audio_input = librosa.resample(audio_input, orig_sr=sr, target_sr=16000)
|
25 |
+
|
26 |
+
# Process and transcribe the audio
|
27 |
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
|
28 |
predicted_ids = model.generate(input_features)
|
29 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
30 |
+
|
31 |
+
return transcription[0] # Decode returns a list
|
32 |
|
33 |
+
# Create the Gradio interface
|
34 |
iface = gr.Interface(
|
35 |
fn=transcribe,
|
36 |
+
inputs=gr.Audio(),
|
37 |
outputs="text",
|
38 |
title="Whisper Medium Shqip",
|
39 |
description="Realtime demo for Sq speech recognition using a fine-tuned Whisper medium model.",
|
40 |
)
|
41 |
|
42 |
+
iface.launch(share=True)
|
43 |
|