Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import pickle | |
# import string | |
# from nltk.corpus import stopwords | |
# import nltk | |
# from nltk.stem.porter import PorterStemmer | |
# ps = PorterStemmer() | |
# def transform_text(text): | |
# text = text.lower() | |
# text = nltk.word_tokenize(text) | |
# y = [] | |
# for i in text: | |
# if i.isalnum(): | |
# y.append(i) | |
# text = y[:] | |
# y.clear() | |
# for i in text: | |
# if i not in stopwords.words('english') and i not in string.punctuation: | |
# y.append(i) | |
# text = y[:] | |
# y.clear() | |
# for i in text: | |
# y.append(ps.stem(i)) | |
# return ' '.join(y) | |
# tfidf = pickle.load(open('vectorizer.pkl', 'rb')) | |
# model = pickle.load(open('model.pkl', 'rb')) | |
# st.title("Email/SMS SPAM Classifier") | |
# input_sms = st.text_area("Enter the message") | |
# if st.button('Predict'): | |
# # 1. preprocess | |
# transform_sms = transform_text(input_sms) | |
# # 2. vectorize | |
# vector_input = tfidf.transform([transform_sms]) | |
# # 3. predict | |
# result = model.predict(vector_input)[0] | |
# # 4. Display | |
# if result == 1: | |
# st.header("Spam") | |
# else: | |
# st.header("Not Spam") | |
import streamlit as st | |
import pickle | |
import string | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem.porter import PorterStemmer | |
# Download NLTK resources if not already downloaded | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
ps = PorterStemmer() | |
def transform_text(text): | |
text = text.lower() | |
text = nltk.word_tokenize(text) | |
y = [] | |
for i in text: | |
if i.isalnum(): | |
y.append(i) | |
text = y[:] | |
y.clear() | |
for i in text: | |
if i not in stopwords.words('english') and i not in string.punctuation: | |
y.append(i) | |
text = y[:] | |
y.clear() | |
for i in text: | |
y.append(ps.stem(i)) | |
return ' '.join(y) | |
tfidf = pickle.load(open('vectorizer.pkl', 'rb')) | |
model = pickle.load(open('model.pkl', 'rb')) | |
st.title("Email/SMS SPAM Classifier") | |
input_sms = st.text_area("Enter the message") | |
if st.button('Predict'): | |
# 1. preprocess | |
transform_sms = transform_text(input_sms) | |
# 2. vectorize | |
vector_input = tfidf.transform([transform_sms]) | |
# 3. predict | |
result = model.predict(vector_input)[0] | |
# 4. Display | |
if result == 1: | |
st.header("Spam") | |
else: | |
st.header("Not Spam") | |