Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,118 +5,7 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
5 |
import fitz # PyMuPDF for PDF processing
|
6 |
import docx2txt # For DOCX processing
|
7 |
from fpdf import FPDF # For creating PDF outputs
|
8 |
-
import typing
|
9 |
-
from typing import Any, Union
|
10 |
|
11 |
-
# Add modified JSON schema handling functions
|
12 |
-
def get_type(schema: Union[dict, bool]) -> str:
|
13 |
-
"""Get the type of a JSON schema.
|
14 |
-
|
15 |
-
Args:
|
16 |
-
schema: JSON schema object or boolean
|
17 |
-
|
18 |
-
Returns:
|
19 |
-
str: Type of the schema
|
20 |
-
"""
|
21 |
-
if isinstance(schema, bool):
|
22 |
-
return "boolean"
|
23 |
-
if not isinstance(schema, dict):
|
24 |
-
return "any"
|
25 |
-
if "const" in schema:
|
26 |
-
return "const"
|
27 |
-
if "enum" in schema:
|
28 |
-
return "enum"
|
29 |
-
elif "type" in schema:
|
30 |
-
return schema["type"]
|
31 |
-
elif schema.get("$ref"):
|
32 |
-
return "$ref"
|
33 |
-
elif schema.get("oneOf"):
|
34 |
-
return "oneOf"
|
35 |
-
elif schema.get("anyOf"):
|
36 |
-
return "anyOf"
|
37 |
-
elif schema.get("allOf"):
|
38 |
-
return "allOf"
|
39 |
-
return "any"
|
40 |
-
|
41 |
-
def _json_schema_to_python_type(schema: Any, defs: Any) -> str:
|
42 |
-
"""Convert JSON schema to Python type hint.
|
43 |
-
|
44 |
-
Args:
|
45 |
-
schema: JSON schema
|
46 |
-
defs: Schema definitions
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
str: Python type hint
|
50 |
-
"""
|
51 |
-
if schema == {}:
|
52 |
-
return "Any"
|
53 |
-
|
54 |
-
type_ = get_type(schema)
|
55 |
-
|
56 |
-
if type_ == "boolean":
|
57 |
-
return "bool"
|
58 |
-
elif type_ == "any":
|
59 |
-
if isinstance(schema, dict) and "description" in schema and "json" in schema["description"]:
|
60 |
-
return "str | float | bool | list | dict"
|
61 |
-
return "Any"
|
62 |
-
elif type_ == "$ref":
|
63 |
-
return _json_schema_to_python_type(defs[schema["$ref"].split("/")[-1]], defs)
|
64 |
-
elif type_ == "null":
|
65 |
-
return "None"
|
66 |
-
elif type_ == "const":
|
67 |
-
return f"Literal[{schema['const']}]"
|
68 |
-
elif type_ == "enum":
|
69 |
-
return "Literal[" + ", ".join([f"'{str(v)}'" for v in schema["enum"]]) + "]"
|
70 |
-
elif type_ == "integer":
|
71 |
-
return "int"
|
72 |
-
elif type_ == "string":
|
73 |
-
return "str"
|
74 |
-
elif type_ == "boolean":
|
75 |
-
return "bool"
|
76 |
-
elif type_ == "number":
|
77 |
-
return "float"
|
78 |
-
elif type_ == "array":
|
79 |
-
items = schema.get("items", {})
|
80 |
-
if isinstance(items, bool):
|
81 |
-
return "list[Any]"
|
82 |
-
if "prefixItems" in items:
|
83 |
-
elements = ", ".join(
|
84 |
-
[_json_schema_to_python_type(i, defs) for i in items["prefixItems"]]
|
85 |
-
)
|
86 |
-
return f"tuple[{elements}]"
|
87 |
-
elif "prefixItems" in schema:
|
88 |
-
elements = ", ".join(
|
89 |
-
[_json_schema_to_python_type(i, defs) for i in schema["prefixItems"]]
|
90 |
-
)
|
91 |
-
return f"tuple[{elements}]"
|
92 |
-
else:
|
93 |
-
elements = _json_schema_to_python_type(items, defs)
|
94 |
-
return f"list[{elements}]"
|
95 |
-
elif type_ == "object":
|
96 |
-
props = schema.get("properties", {})
|
97 |
-
|
98 |
-
def get_desc(v):
|
99 |
-
return f" ({v.get('description')})" if isinstance(v, dict) and v.get("description") else ""
|
100 |
-
|
101 |
-
des = [
|
102 |
-
f"{n}: {_json_schema_to_python_type(v, defs)}{get_desc(v)}"
|
103 |
-
for n, v in props.items()
|
104 |
-
if n != "$defs"
|
105 |
-
]
|
106 |
-
|
107 |
-
if "additionalProperties" in schema:
|
108 |
-
additional_properties = schema["additionalProperties"]
|
109 |
-
if isinstance(additional_properties, bool):
|
110 |
-
if additional_properties:
|
111 |
-
des += ["str, Any"]
|
112 |
-
else:
|
113 |
-
des += [f"str, {_json_schema_to_python_type(additional_properties, defs)}"]
|
114 |
-
des = ", ".join(des)
|
115 |
-
return f"dict({des})"
|
116 |
-
else:
|
117 |
-
return "Any"
|
118 |
-
|
119 |
-
# The rest of your original code remains the same
|
120 |
# Load model and tokenizer
|
121 |
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
122 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -126,7 +15,7 @@ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
126 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
127 |
model = model.to(device)
|
128 |
|
129 |
-
#
|
130 |
LANGUAGES = {
|
131 |
# Major Global Languages
|
132 |
"English": "en_XX",
|
@@ -149,8 +38,145 @@ LANGUAGES = {
|
|
149 |
"Urdu": "ur_PK"
|
150 |
}
|
151 |
|
152 |
-
#
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
# Create Gradio interface
|
156 |
with gr.Blocks(title="Indian Language Translator") as demo:
|
@@ -189,6 +215,12 @@ with gr.Blocks(title="Indian Language Translator") as demo:
|
|
189 |
inputs=[file_input, source_lang_doc, target_lang_doc],
|
190 |
outputs=[output_file, output_preview]
|
191 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
demo.launch(share=True)
|
|
|
5 |
import fitz # PyMuPDF for PDF processing
|
6 |
import docx2txt # For DOCX processing
|
7 |
from fpdf import FPDF # For creating PDF outputs
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Load model and tokenizer
|
10 |
model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
model = model.to(device)
|
17 |
|
18 |
+
# Language mappings
|
19 |
LANGUAGES = {
|
20 |
# Major Global Languages
|
21 |
"English": "en_XX",
|
|
|
38 |
"Urdu": "ur_PK"
|
39 |
}
|
40 |
|
41 |
+
# Define translation function first
|
42 |
+
def translate(text: str, source_lang: str, target_lang: str, max_length: int = 1024) -> str:
|
43 |
+
"""
|
44 |
+
Translate text from source language to target language.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
text: Text to translate
|
48 |
+
source_lang: Source language name
|
49 |
+
target_lang: Target language name
|
50 |
+
max_length: Maximum length of input text
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
str: Translated text
|
54 |
+
"""
|
55 |
+
if not text:
|
56 |
+
return "No text provided for translation."
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Get language codes
|
60 |
+
src_lang = LANGUAGES.get(source_lang)
|
61 |
+
tgt_lang = LANGUAGES.get(target_lang)
|
62 |
+
|
63 |
+
if not src_lang or not tgt_lang:
|
64 |
+
return "Source or target language not supported."
|
65 |
+
|
66 |
+
# Set tokenizer source language
|
67 |
+
tokenizer.src_lang = src_lang
|
68 |
+
|
69 |
+
# Prepare input
|
70 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=max_length, truncation=True)
|
71 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
72 |
+
|
73 |
+
# Generate translation
|
74 |
+
with torch.no_grad():
|
75 |
+
generated_tokens = model.generate(
|
76 |
+
**inputs,
|
77 |
+
forced_bos_token_id=tokenizer.lang_to_id[tgt_lang],
|
78 |
+
max_length=max_length,
|
79 |
+
num_beams=5,
|
80 |
+
early_stopping=True
|
81 |
+
)
|
82 |
+
|
83 |
+
# Decode translation
|
84 |
+
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
85 |
+
return translation
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
return f"Translation error: {str(e)}"
|
89 |
+
|
90 |
+
# File handling functions
|
91 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
92 |
+
"""Extract text from a PDF file"""
|
93 |
+
text = ""
|
94 |
+
try:
|
95 |
+
doc = fitz.open(file_path)
|
96 |
+
for page in doc:
|
97 |
+
text += page.get_text()
|
98 |
+
return text
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error extracting PDF text: {str(e)}"
|
101 |
+
|
102 |
+
def extract_text_from_docx(file_path: str) -> str:
|
103 |
+
"""Extract text from a DOCX file"""
|
104 |
+
try:
|
105 |
+
return docx2txt.process(file_path)
|
106 |
+
except Exception as e:
|
107 |
+
return f"Error extracting DOCX text: {str(e)}"
|
108 |
+
|
109 |
+
def extract_text_from_txt(file_path: str) -> str:
|
110 |
+
"""Extract text from a TXT file"""
|
111 |
+
try:
|
112 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
113 |
+
return file.read()
|
114 |
+
except UnicodeDecodeError:
|
115 |
+
try:
|
116 |
+
with open(file_path, 'r', encoding='latin-1') as file:
|
117 |
+
return file.read()
|
118 |
+
except Exception as e:
|
119 |
+
return f"Error extracting TXT text: {str(e)}"
|
120 |
+
except Exception as e:
|
121 |
+
return f"Error extracting TXT text: {str(e)}"
|
122 |
+
|
123 |
+
def save_as_pdf(text: str, output_path: str) -> str:
|
124 |
+
"""Save text as PDF"""
|
125 |
+
pdf = FPDF()
|
126 |
+
pdf.add_page()
|
127 |
+
pdf.set_font("Arial", size=12)
|
128 |
+
|
129 |
+
try:
|
130 |
+
# Try UTF-8 first
|
131 |
+
pdf.multi_cell(0, 10, text)
|
132 |
+
except Exception:
|
133 |
+
try:
|
134 |
+
# Fall back to latin-1 with replacement
|
135 |
+
encoded_text = text.encode('latin-1', 'replace').decode('latin-1')
|
136 |
+
pdf.multi_cell(0, 10, encoded_text)
|
137 |
+
except Exception as e:
|
138 |
+
return f"Error creating PDF: {str(e)}"
|
139 |
+
|
140 |
+
try:
|
141 |
+
pdf.output(output_path)
|
142 |
+
return output_path
|
143 |
+
except Exception as e:
|
144 |
+
return f"Error saving PDF: {str(e)}"
|
145 |
+
|
146 |
+
def process_file(file, source_lang: str, target_lang: str) -> tuple[str | None, str]:
|
147 |
+
"""Process uploaded file and translate its content"""
|
148 |
+
if file is None:
|
149 |
+
return None, "No file uploaded."
|
150 |
+
|
151 |
+
try:
|
152 |
+
# Save uploaded file temporarily
|
153 |
+
temp_file_path = file.name
|
154 |
+
|
155 |
+
# Extract text based on file type
|
156 |
+
if temp_file_path.lower().endswith('.pdf'):
|
157 |
+
text = extract_text_from_pdf(temp_file_path)
|
158 |
+
elif temp_file_path.lower().endswith('.docx'):
|
159 |
+
text = extract_text_from_docx(temp_file_path)
|
160 |
+
elif temp_file_path.lower().endswith('.txt'):
|
161 |
+
text = extract_text_from_txt(temp_file_path)
|
162 |
+
else:
|
163 |
+
return None, "Unsupported file format. Please upload PDF, DOCX, or TXT files."
|
164 |
+
|
165 |
+
# Translate the extracted text
|
166 |
+
translated_text = translate(text, source_lang, target_lang)
|
167 |
+
|
168 |
+
# Save translation as PDF
|
169 |
+
output_pdf_path = os.path.join(os.path.dirname(temp_file_path),
|
170 |
+
f"translated_{os.path.basename(temp_file_path)}.pdf")
|
171 |
+
result = save_as_pdf(translated_text, output_pdf_path)
|
172 |
+
|
173 |
+
if isinstance(result, str) and result.startswith("Error"):
|
174 |
+
return None, result
|
175 |
+
|
176 |
+
return output_pdf_path, translated_text
|
177 |
+
|
178 |
+
except Exception as e:
|
179 |
+
return None, f"Error processing file: {str(e)}"
|
180 |
|
181 |
# Create Gradio interface
|
182 |
with gr.Blocks(title="Indian Language Translator") as demo:
|
|
|
215 |
inputs=[file_input, source_lang_doc, target_lang_doc],
|
216 |
outputs=[output_file, output_preview]
|
217 |
)
|
218 |
+
|
219 |
+
gr.Markdown("### Supported File Types: PDF, DOCX, TXT")
|
220 |
+
gr.Markdown("### Features:")
|
221 |
+
gr.Markdown("- Supports major Indian languages including Hindi, Bengali, Tamil, Telugu, Malayalam")
|
222 |
+
gr.Markdown("- Context-aware translation that understands idioms and cultural expressions")
|
223 |
+
gr.Markdown("- Document translation with PDF output")
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
demo.launch(share=True)
|