Spaces:
Running
Running
from transformers import pipeline | |
from PIL import Image | |
import gradio as gr | |
# Load the Hugging Face depth estimation pipeline | |
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") | |
def estimate_depth(image): | |
# Perform depth estimation on the input image | |
depth = pipe(image)["depth"] | |
return depth | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=estimate_depth, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Depth Estimation", | |
description="Upload an image to get its depth estimation map." | |
) | |
# Launch the Gradio app | |
iface.launch() | |
""" | |
from transformers import pipeline | |
from PIL import Image | |
import requests | |
# load pipe | |
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf") | |
# load image | |
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
image = Image.open(requests.get(url, stream=True).raw) | |
# inference | |
depth = pipe(image)["depth"] | |
""" |