File size: 6,921 Bytes
e0169c8 eeafaaa 8b1c859 e0169c8 360f505 8b1c859 e0169c8 360f505 eeafaaa e0169c8 360f505 e0169c8 360f505 8b1c859 e0169c8 8b1c859 e0169c8 8b1c859 e0169c8 8b1c859 eeafaaa 8b1c859 e0169c8 8b1c859 e0169c8 8b1c859 e0169c8 8b1c859 eeafaaa 8b1c859 e0169c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
from typing import Any, Dict, Generator, List
# from huggingface_hub import InferenceClient
# from transformers import AutoTokenizer
from jinja2 import Environment, FileSystemLoader
from settings import *
from gradio_app.backend.ChatGptInteractor import *
# tokenizer = AutoTokenizer.from_pretrained(LLM_NAME)
# HF_TOKEN = None
# hf_client = InferenceClient(LLM_NAME, token=HF_TOKEN)
def format_prompt(message: str, api_kind: str):
"""
Formats the given message using a chat template.
Args:
message (str): The user message to be formatted.
Returns:
str: Formatted message after applying the chat template.
"""
# Create a list of message dictionaries with role and content
messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}]
if api_kind == "openai":
return messages
elif api_kind == "hf":
return tokenizer.apply_chat_template(messages, tokenize=False)
else:
raise ValueError("API is not supported")
def generate_hf(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 512,
top_p: float = 0.6, repetition_penalty: float = 1.2) -> Generator[str, None, str]:
"""
Generate a sequence of tokens based on a given prompt and history using Mistral client.
Args:
prompt (str): The initial prompt for the text generation.
history (str): Context or history for the text generation.
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
Returns:
Generator[str, None, str]: A generator yielding chunks of generated text.
Returns a final string if an error occurs.
"""
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low
top_p = float(top_p)
generate_kwargs = {
'temperature': temperature,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'repetition_penalty': repetition_penalty,
'do_sample': True,
'seed': 42,
}
formatted_prompt = format_prompt(prompt, "hf")
try:
stream = hf_client.text_generation(formatted_prompt, **generate_kwargs,
stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
except Exception as e:
if "Too Many Requests" in str(e):
print("ERROR: Too many requests on Mistral client")
gr.Warning("Unfortunately Mistral is unable to process")
return "Unfortunately, I am not able to process your request now."
elif "Authorization header is invalid" in str(e):
print("Authetification error:", str(e))
gr.Warning("Authentication error: HF token was either not provided or incorrect")
return "Authentication error"
else:
print("Unhandled Exception:", str(e))
gr.Warning("Unfortunately Mistral is unable to process")
return "I do not know what happened, but I couldn't understand you."
env = Environment(loader=FileSystemLoader('gradio_app/templates'))
context_template = env.get_template('context_template.j2')
start_system_message = context_template.render(documents=[])
def construct_openai_messages(context, history):
messages = [
{
"role": "system",
"content": start_system_message,
},
]
for q, a in history:
if len(a) == 0: # the last message
messages.append({
"role": "system",
"content": context,
})
messages.append({
"role": "user",
"content": q,
})
if len(a) != 0: # some of the previous LLM answers
messages.append({
"role": "assistant",
"content": a,
})
return messages
def generate_openai(messages):
cgi = ChatGptInteractor(model_name=LLM_NAME)
for part in cgi.chat_completion(messages, max_tokens=512, temperature=0, stream=True):
yield cgi.get_stream_text(part)
def _generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 512,
top_p: float = 0.6, repetition_penalty: float = 1.2) -> Generator[str, None, str]:
"""
Generate a sequence of tokens based on a given prompt and history using Mistral client.
Args:
prompt (str): The initial prompt for the text generation.
history (str): Context or history for the text generation.
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
Returns:
Generator[str, None, str]: A generator yielding chunks of generated text.
Returns a final string if an error occurs.
"""
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low
top_p = float(top_p)
generate_kwargs = {
'temperature': temperature,
'max_tokens': max_new_tokens,
'top_p': top_p,
'frequency_penalty': max(-2., min(repetition_penalty, 2.)),
}
formatted_prompt = format_prompt(prompt, "openai")
try:
stream = openai.ChatCompletion.create(
model=LLM_NAME,
messages=formatted_prompt,
**generate_kwargs,
stream=True
)
output = ""
for chunk in stream:
output += chunk.choices[0].delta.get("content", "")
yield output
except Exception as e:
if "Too Many Requests" in str(e):
print("ERROR: Too many requests on OpenAI client")
gr.Warning("Unfortunately OpenAI is unable to process")
return "Unfortunately, I am not able to process your request now."
elif "You didn't provide an API key" in str(e):
print("Authetification error:", str(e))
gr.Warning("Authentication error: OpenAI key was either not provided or incorrect")
return "Authentication error"
else:
print("Unhandled Exception:", str(e))
gr.Warning("Unfortunately OpenAI is unable to process")
return "I do not know what happened, but I couldn't understand you."
|