import shutil import traceback import lancedb import torch import pyarrow as pa import pandas as pd from pathlib import Path import tqdm import numpy as np from sentence_transformers import SentenceTransformer from markdown_to_text import * from settings import * shutil.rmtree(LANCEDB_DIRECTORY, ignore_errors=True) db = lancedb.connect(LANCEDB_DIRECTORY) batch_size = 32 model = SentenceTransformer(EMB_MODEL_NAME) model.eval() if torch.backends.mps.is_available(): device = "mps" elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" schema = pa.schema([ pa.field(VECTOR_COLUMN_NAME, pa.list_(pa.float32(), emb_sizes[EMB_MODEL_NAME])), pa.field(TEXT_COLUMN_NAME, pa.string()), pa.field(DOCUMENT_PATH_COLUMN_NAME, pa.string()), ]) tbl = db.create_table(LANCEDB_TABLE_NAME, schema=schema, mode="overwrite") input_dir = Path(MARKDOWN_SOURCE_DIR) files = list(input_dir.rglob("*")) chunks = [] for file in files: if not os.path.isfile(file): continue file_path, file_ext = os.path.splitext(os.path.relpath(file, input_dir)) if file_ext != '.md': print(f'Skipped {file_ext} extension: {file}') continue doc_header = ' / '.join(split_path(file_path)) + ':\n\n' with open(file, encoding='utf-8') as f: f = f.read() f = remove_comments(f) f = split_markdown(f) chunks.extend((doc_header + chunk, os.path.abspath(file)) for chunk in f) from matplotlib import pyplot as plt plt.hist([len(c) for c, d in chunks], bins=100) plt.show() for i in tqdm.tqdm(range(0, int(np.ceil(len(chunks) / batch_size)))): texts, doc_paths = [], [] for text, doc_path in chunks[i * batch_size:(i + 1) * batch_size]: if len(text) > 0: texts.append(text) doc_paths.append(doc_path) encoded = model.encode(texts, normalize_embeddings=True, device=device) encoded = [list(vec) for vec in encoded] df = pd.DataFrame({ VECTOR_COLUMN_NAME: encoded, TEXT_COLUMN_NAME: texts, DOCUMENT_PATH_COLUMN_NAME: doc_paths, }) tbl.add(df) # ''' # create ivf-pd index https://lancedb.github.io/lancedb/ann_indexes/ # with the size of the transformer docs, index is not really needed # but we'll do it for demonstration purposes # ''' # tbl.create_index(num_partitions=256, num_sub_vectors=96, vector_column_name=VECTOR_COLUMN_NAME)