File size: 11,555 Bytes
159f437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import copy
import logging
import numpy as np
from typing import List, Optional, Union
import torch
import pycocotools.mask as mask_util

from detectron2.config import configurable

from detectron2.data import detection_utils as utils
from detectron2.data.detection_utils import transform_keypoint_annotations
from detectron2.data import transforms as T
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.structures import Boxes, BoxMode, Instances
from detectron2.structures import Keypoints, PolygonMasks, BitMasks
from fvcore.transforms.transform import TransformList
from .custom_build_augmentation import build_custom_augmentation
from .tar_dataset import DiskTarDataset

__all__ = ["CustomDatasetMapper"]

class CustomDatasetMapper(DatasetMapper):
    @configurable
    def __init__(self, is_train: bool, 
        with_ann_type=False,
        dataset_ann=[],
        use_diff_bs_size=False,
        dataset_augs=[],
        is_debug=False,
        use_tar_dataset=False,
        tarfile_path='',
        tar_index_dir='',
        **kwargs):
        """
        add image labels
        """
        self.with_ann_type = with_ann_type
        self.dataset_ann = dataset_ann
        self.use_diff_bs_size = use_diff_bs_size
        if self.use_diff_bs_size and is_train:
            self.dataset_augs = [T.AugmentationList(x) for x in dataset_augs]
        self.is_debug = is_debug
        self.use_tar_dataset = use_tar_dataset
        if self.use_tar_dataset:
            print('Using tar dataset')
            self.tar_dataset = DiskTarDataset(tarfile_path, tar_index_dir)
        super().__init__(is_train, **kwargs)
 

    @classmethod
    def from_config(cls, cfg, is_train: bool = True):
        ret = super().from_config(cfg, is_train)
        ret.update({
            'with_ann_type': cfg.WITH_IMAGE_LABELS,
            'dataset_ann': cfg.DATALOADER.DATASET_ANN,
            'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE,
            'is_debug': cfg.IS_DEBUG,
            'use_tar_dataset': cfg.DATALOADER.USE_TAR_DATASET,
            'tarfile_path': cfg.DATALOADER.TARFILE_PATH,
            'tar_index_dir': cfg.DATALOADER.TAR_INDEX_DIR,
        })
        if ret['use_diff_bs_size'] and is_train:
            if cfg.INPUT.CUSTOM_AUG == 'EfficientDetResizeCrop':
                dataset_scales = cfg.DATALOADER.DATASET_INPUT_SCALE
                dataset_sizes = cfg.DATALOADER.DATASET_INPUT_SIZE
                ret['dataset_augs'] = [
                    build_custom_augmentation(cfg, True, scale, size) \
                        for scale, size in zip(dataset_scales, dataset_sizes)]
            else:
                assert cfg.INPUT.CUSTOM_AUG == 'ResizeShortestEdge'
                min_sizes = cfg.DATALOADER.DATASET_MIN_SIZES
                max_sizes = cfg.DATALOADER.DATASET_MAX_SIZES
                ret['dataset_augs'] = [
                    build_custom_augmentation(
                        cfg, True, min_size=mi, max_size=ma) \
                        for mi, ma in zip(min_sizes, max_sizes)]
        else:
            ret['dataset_augs'] = []

        return ret

    def __call__(self, dataset_dict):
        """
        include image labels
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        # USER: Write your own image loading if it's not from a file
        if 'file_name' in dataset_dict:
            ori_image = utils.read_image(
                dataset_dict["file_name"], format=self.image_format)
        else:
            ori_image, _, _ = self.tar_dataset[dataset_dict["tar_index"]]
            ori_image = utils._apply_exif_orientation(ori_image)
            ori_image = utils.convert_PIL_to_numpy(ori_image, self.image_format)
        utils.check_image_size(dataset_dict, ori_image)

        # USER: Remove if you don't do semantic/panoptic segmentation.
        if "sem_seg_file_name" in dataset_dict:
            sem_seg_gt = utils.read_image(
                dataset_dict.pop("sem_seg_file_name"), "L").squeeze(2)
        else:
            sem_seg_gt = None

        if self.is_debug:
            dataset_dict['dataset_source'] = 0

        not_full_labeled = 'dataset_source' in dataset_dict and \
            self.with_ann_type and \
                self.dataset_ann[dataset_dict['dataset_source']] != 'box'

        aug_input = T.AugInput(copy.deepcopy(ori_image), sem_seg=sem_seg_gt)
        if self.use_diff_bs_size and self.is_train:
            transforms = \
                self.dataset_augs[dataset_dict['dataset_source']](aug_input)
        else:
            transforms = self.augmentations(aug_input)
        image, sem_seg_gt = aug_input.image, aug_input.sem_seg

        image_shape = image.shape[:2]  # h, w
        dataset_dict["image"] = torch.as_tensor(
            np.ascontiguousarray(image.transpose(2, 0, 1)))
        
        if sem_seg_gt is not None:
            dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long"))

        # USER: Remove if you don't use pre-computed proposals.
        # Most users would not need this feature.
        if self.proposal_topk is not None:
            utils.transform_proposals(
                dataset_dict, image_shape, transforms, 
                proposal_topk=self.proposal_topk
            )

        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            dataset_dict.pop("sem_seg_file_name", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                if not self.use_instance_mask:
                    anno.pop("segmentation", None)
                if not self.use_keypoint:
                    anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            all_annos = [
                (utils.transform_instance_annotations(
                    obj, transforms, image_shape, 
                    keypoint_hflip_indices=self.keypoint_hflip_indices,
                ),  obj.get("iscrowd", 0))
                for obj in dataset_dict.pop("annotations")
            ]
            annos = [ann[0] for ann in all_annos if ann[1] == 0]
            instances = utils.annotations_to_instances(
                annos, image_shape, mask_format=self.instance_mask_format
            )
            
            del all_annos
            if self.recompute_boxes:
                instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
            dataset_dict["instances"] = utils.filter_empty_instances(instances)
        if self.with_ann_type:
            dataset_dict["pos_category_ids"] = dataset_dict.get(
                'pos_category_ids', [])
            dataset_dict["ann_type"] = \
                self.dataset_ann[dataset_dict['dataset_source']]
        if self.is_debug and (('pos_category_ids' not in dataset_dict) or \
            (dataset_dict['pos_category_ids'] == [])):
            dataset_dict['pos_category_ids'] = [x for x in sorted(set(
                dataset_dict['instances'].gt_classes.tolist()
            ))]
        return dataset_dict

# DETR augmentation
def build_transform_gen(cfg, is_train):
    """
    """
    if is_train:
        min_size = cfg.INPUT.MIN_SIZE_TRAIN
        max_size = cfg.INPUT.MAX_SIZE_TRAIN
        sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
    else:
        min_size = cfg.INPUT.MIN_SIZE_TEST
        max_size = cfg.INPUT.MAX_SIZE_TEST
        sample_style = "choice"
    if sample_style == "range":
        assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size))

    logger = logging.getLogger(__name__)
    tfm_gens = []
    if is_train:
        tfm_gens.append(T.RandomFlip())
    tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style))
    if is_train:
        logger.info("TransformGens used in training: " + str(tfm_gens))
    return tfm_gens


class DetrDatasetMapper:
    """
    A callable which takes a dataset dict in Detectron2 Dataset format,
    and map it into a format used by DETR.
    The callable currently does the following:
    1. Read the image from "file_name"
    2. Applies geometric transforms to the image and annotation
    3. Find and applies suitable cropping to the image and annotation
    4. Prepare image and annotation to Tensors
    """

    def __init__(self, cfg, is_train=True):
        if cfg.INPUT.CROP.ENABLED and is_train:
            self.crop_gen = [
                T.ResizeShortestEdge([400, 500, 600], sample_style="choice"),
                T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE),
            ]
        else:
            self.crop_gen = None

        self.mask_on = cfg.MODEL.MASK_ON
        self.tfm_gens = build_transform_gen(cfg, is_train)
        logging.getLogger(__name__).info(
            "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen))
        )

        self.img_format = cfg.INPUT.FORMAT
        self.is_train = is_train

    def __call__(self, dataset_dict):
        """
        Args:
            dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
        Returns:
            dict: a format that builtin models in detectron2 accept
        """
        dataset_dict = copy.deepcopy(dataset_dict)  # it will be modified by code below
        image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
        utils.check_image_size(dataset_dict, image)

        if self.crop_gen is None:
            image, transforms = T.apply_transform_gens(self.tfm_gens, image)
        else:
            if np.random.rand() > 0.5:
                image, transforms = T.apply_transform_gens(self.tfm_gens, image)
            else:
                image, transforms = T.apply_transform_gens(
                    self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image
                )

        image_shape = image.shape[:2]  # h, w

        # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
        # but not efficient on large generic data structures due to the use of pickle & mp.Queue.
        # Therefore it's important to use torch.Tensor.
        dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))

        if not self.is_train:
            # USER: Modify this if you want to keep them for some reason.
            dataset_dict.pop("annotations", None)
            return dataset_dict

        if "annotations" in dataset_dict:
            # USER: Modify this if you want to keep them for some reason.
            for anno in dataset_dict["annotations"]:
                if not self.mask_on:
                    anno.pop("segmentation", None)
                anno.pop("keypoints", None)

            # USER: Implement additional transformations if you have other types of data
            annos = [
                utils.transform_instance_annotations(obj, transforms, image_shape)
                for obj in dataset_dict.pop("annotations")
                if obj.get("iscrowd", 0) == 0
            ]
            instances = utils.annotations_to_instances(annos, image_shape)
            dataset_dict["instances"] = utils.filter_empty_instances(instances)
        return dataset_dict