Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Xingyi Zhou from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/coco.py | |
import copy | |
import io | |
import logging | |
import contextlib | |
import os | |
import datetime | |
import json | |
import numpy as np | |
from PIL import Image | |
from fvcore.common.timer import Timer | |
from fvcore.common.file_io import PathManager, file_lock | |
from detectron2.structures import BoxMode, PolygonMasks, Boxes | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
logger = logging.getLogger(__name__) | |
""" | |
This file contains functions to register a COCO-format dataset to the DatasetCatalog. | |
""" | |
__all__ = ["register_coco_instances", "register_coco_panoptic_separated"] | |
def register_oid_instances(name, metadata, json_file, image_root): | |
""" | |
""" | |
# 1. register a function which returns dicts | |
DatasetCatalog.register(name, lambda: load_coco_json_mem_efficient( | |
json_file, image_root, name)) | |
# 2. Optionally, add metadata about this dataset, | |
# since they might be useful in evaluation, visualization or logging | |
MetadataCatalog.get(name).set( | |
json_file=json_file, image_root=image_root, evaluator_type="oid", **metadata | |
) | |
def load_coco_json_mem_efficient(json_file, image_root, dataset_name=None, extra_annotation_keys=None): | |
""" | |
Actually not mem efficient | |
""" | |
from pycocotools.coco import COCO | |
timer = Timer() | |
json_file = PathManager.get_local_path(json_file) | |
with contextlib.redirect_stdout(io.StringIO()): | |
coco_api = COCO(json_file) | |
if timer.seconds() > 1: | |
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds())) | |
id_map = None | |
if dataset_name is not None: | |
meta = MetadataCatalog.get(dataset_name) | |
cat_ids = sorted(coco_api.getCatIds()) | |
cats = coco_api.loadCats(cat_ids) | |
# The categories in a custom json file may not be sorted. | |
thing_classes = [c["name"] for c in sorted(cats, key=lambda x: x["id"])] | |
meta.thing_classes = thing_classes | |
if not (min(cat_ids) == 1 and max(cat_ids) == len(cat_ids)): | |
if "coco" not in dataset_name: | |
logger.warning( | |
""" | |
Category ids in annotations are not in [1, #categories]! We'll apply a mapping for you. | |
""" | |
) | |
id_map = {v: i for i, v in enumerate(cat_ids)} | |
meta.thing_dataset_id_to_contiguous_id = id_map | |
# sort indices for reproducible results | |
img_ids = sorted(coco_api.imgs.keys()) | |
imgs = coco_api.loadImgs(img_ids) | |
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), json_file)) | |
dataset_dicts = [] | |
ann_keys = ["iscrowd", "bbox", "category_id"] + (extra_annotation_keys or []) | |
for img_dict in imgs: | |
record = {} | |
record["file_name"] = os.path.join(image_root, img_dict["file_name"]) | |
record["height"] = img_dict["height"] | |
record["width"] = img_dict["width"] | |
image_id = record["image_id"] = img_dict["id"] | |
anno_dict_list = coco_api.imgToAnns[image_id] | |
if 'neg_category_ids' in img_dict: | |
record['neg_category_ids'] = \ | |
[id_map[x] for x in img_dict['neg_category_ids']] | |
objs = [] | |
for anno in anno_dict_list: | |
assert anno["image_id"] == image_id | |
assert anno.get("ignore", 0) == 0 | |
obj = {key: anno[key] for key in ann_keys if key in anno} | |
segm = anno.get("segmentation", None) | |
if segm: # either list[list[float]] or dict(RLE) | |
if not isinstance(segm, dict): | |
# filter out invalid polygons (< 3 points) | |
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] | |
if len(segm) == 0: | |
num_instances_without_valid_segmentation += 1 | |
continue # ignore this instance | |
obj["segmentation"] = segm | |
obj["bbox_mode"] = BoxMode.XYWH_ABS | |
if id_map: | |
obj["category_id"] = id_map[obj["category_id"]] | |
objs.append(obj) | |
record["annotations"] = objs | |
dataset_dicts.append(record) | |
del coco_api | |
return dataset_dicts |