Detic / detic /modeling /debug.py
AK391
files
159f437
# Copyright (c) Facebook, Inc. and its affiliates.
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import os
COLORS = ((np.random.rand(1300, 3) * 0.4 + 0.6) * 255).astype(
np.uint8).reshape(1300, 1, 1, 3)
def _get_color_image(heatmap):
heatmap = heatmap.reshape(
heatmap.shape[0], heatmap.shape[1], heatmap.shape[2], 1)
if heatmap.shape[0] == 1:
color_map = (heatmap * np.ones((1, 1, 1, 3), np.uint8) * 255).max(
axis=0).astype(np.uint8) # H, W, 3
else:
color_map = (heatmap * COLORS[:heatmap.shape[0]]).max(axis=0).astype(np.uint8) # H, W, 3
return color_map
def _blend_image(image, color_map, a=0.7):
color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
ret = np.clip(image * (1 - a) + color_map * a, 0, 255).astype(np.uint8)
return ret
def _blend_image_heatmaps(image, color_maps, a=0.7):
merges = np.zeros((image.shape[0], image.shape[1], 3), np.float32)
for color_map in color_maps:
color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
merges = np.maximum(merges, color_map)
ret = np.clip(image * (1 - a) + merges * a, 0, 255).astype(np.uint8)
return ret
def _decompose_level(x, shapes_per_level, N):
'''
x: LNHiWi x C
'''
x = x.view(x.shape[0], -1)
ret = []
st = 0
for l in range(len(shapes_per_level)):
ret.append([])
h = shapes_per_level[l][0].int().item()
w = shapes_per_level[l][1].int().item()
for i in range(N):
ret[l].append(x[st + h * w * i:st + h * w * (i + 1)].view(
h, w, -1).permute(2, 0, 1))
st += h * w * N
return ret
def _imagelist_to_tensor(images):
images = [x for x in images]
image_sizes = [x.shape[-2:] for x in images]
h = max([size[0] for size in image_sizes])
w = max([size[1] for size in image_sizes])
S = 32
h, w = ((h - 1) // S + 1) * S, ((w - 1) // S + 1) * S
images = [F.pad(x, (0, w - x.shape[2], 0, h - x.shape[1], 0, 0)) \
for x in images]
images = torch.stack(images)
return images
def _ind2il(ind, shapes_per_level, N):
r = ind
l = 0
S = 0
while r - S >= N * shapes_per_level[l][0] * shapes_per_level[l][1]:
S += N * shapes_per_level[l][0] * shapes_per_level[l][1]
l += 1
i = (r - S) // (shapes_per_level[l][0] * shapes_per_level[l][1])
return i, l
def debug_train(
images, gt_instances, flattened_hms, reg_targets, labels, pos_inds,
shapes_per_level, locations, strides):
'''
images: N x 3 x H x W
flattened_hms: LNHiWi x C
shapes_per_level: L x 2 [(H_i, W_i)]
locations: LNHiWi x 2
'''
reg_inds = torch.nonzero(
reg_targets.max(dim=1)[0] > 0).squeeze(1)
N = len(images)
images = _imagelist_to_tensor(images)
repeated_locations = [torch.cat([loc] * N, dim=0) \
for loc in locations]
locations = torch.cat(repeated_locations, dim=0)
gt_hms = _decompose_level(flattened_hms, shapes_per_level, N)
masks = flattened_hms.new_zeros((flattened_hms.shape[0], 1))
masks[pos_inds] = 1
masks = _decompose_level(masks, shapes_per_level, N)
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
color_maps = []
for l in range(len(gt_hms)):
color_map = _get_color_image(
gt_hms[l][i].detach().cpu().numpy())
color_maps.append(color_map)
cv2.imshow('gthm_{}'.format(l), color_map)
blend = _blend_image_heatmaps(image.copy(), color_maps)
if gt_instances is not None:
bboxes = gt_instances[i].gt_boxes.tensor
for j in range(len(bboxes)):
bbox = bboxes[j]
cv2.rectangle(
blend,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(0, 0, 255), 3, cv2.LINE_AA)
for j in range(len(pos_inds)):
image_id, l = _ind2il(pos_inds[j], shapes_per_level, N)
if image_id != i:
continue
loc = locations[pos_inds[j]]
cv2.drawMarker(
blend, (int(loc[0]), int(loc[1])), (0, 255, 255),
markerSize=(l + 1) * 16)
for j in range(len(reg_inds)):
image_id, l = _ind2il(reg_inds[j], shapes_per_level, N)
if image_id != i:
continue
ltrb = reg_targets[reg_inds[j]]
ltrb *= strides[l]
loc = locations[reg_inds[j]]
bbox = [(loc[0] - ltrb[0]), (loc[1] - ltrb[1]),
(loc[0] + ltrb[2]), (loc[1] + ltrb[3])]
cv2.rectangle(
blend,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(255, 0, 0), 1, cv2.LINE_AA)
cv2.circle(blend, (int(loc[0]), int(loc[1])), 2, (255, 0, 0), -1)
cv2.imshow('blend', blend)
cv2.waitKey()
def debug_test(
images, logits_pred, reg_pred, agn_hm_pred=[], preds=[],
vis_thresh=0.3, debug_show_name=False, mult_agn=False):
'''
images: N x 3 x H x W
class_target: LNHiWi x C
cat_agn_heatmap: LNHiWi
shapes_per_level: L x 2 [(H_i, W_i)]
'''
N = len(images)
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
result = image.copy().astype(np.uint8)
pred_image = image.copy().astype(np.uint8)
color_maps = []
L = len(logits_pred)
for l in range(L):
if logits_pred[0] is not None:
stride = min(image.shape[0], image.shape[1]) / min(
logits_pred[l][i].shape[1], logits_pred[l][i].shape[2])
else:
stride = min(image.shape[0], image.shape[1]) / min(
agn_hm_pred[l][i].shape[1], agn_hm_pred[l][i].shape[2])
stride = stride if stride < 60 else 64 if stride < 100 else 128
if logits_pred[0] is not None:
if mult_agn:
logits_pred[l][i] = logits_pred[l][i] * agn_hm_pred[l][i]
color_map = _get_color_image(
logits_pred[l][i].detach().cpu().numpy())
color_maps.append(color_map)
cv2.imshow('predhm_{}'.format(l), color_map)
if debug_show_name:
from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES
cat2name = [x['name'] for x in LVIS_CATEGORIES]
for j in range(len(preds[i].scores) if preds is not None else 0):
if preds[i].scores[j] > vis_thresh:
bbox = preds[i].proposal_boxes[j] \
if preds[i].has('proposal_boxes') else \
preds[i].pred_boxes[j]
bbox = bbox.tensor[0].detach().cpu().numpy().astype(np.int32)
cat = int(preds[i].pred_classes[j]) \
if preds[i].has('pred_classes') else 0
cl = COLORS[cat, 0, 0]
cv2.rectangle(
pred_image, (int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
(int(cl[0]), int(cl[1]), int(cl[2])), 2, cv2.LINE_AA)
if debug_show_name:
txt = '{}{:.1f}'.format(
cat2name[cat] if cat > 0 else '',
preds[i].scores[j])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
pred_image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
pred_image, txt, (int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
if agn_hm_pred[l] is not None:
agn_hm_ = agn_hm_pred[l][i, 0, :, :, None].detach().cpu().numpy()
agn_hm_ = (agn_hm_ * np.array([255, 255, 255]).reshape(
1, 1, 3)).astype(np.uint8)
cv2.imshow('agn_hm_{}'.format(l), agn_hm_)
blend = _blend_image_heatmaps(image.copy(), color_maps)
cv2.imshow('blend', blend)
cv2.imshow('preds', pred_image)
cv2.waitKey()
global cnt
cnt = 0
def debug_second_stage(images, instances, proposals=None, vis_thresh=0.3,
save_debug=False, debug_show_name=False, image_labels=[],
save_debug_path='output/save_debug/',
bgr=False):
images = _imagelist_to_tensor(images)
if 'COCO' in save_debug_path:
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
cat2name = [x['name'] for x in COCO_CATEGORIES]
else:
from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES
cat2name = ['({}){}'.format(x['frequency'], x['name']) \
for x in LVIS_CATEGORIES]
for i in range(len(images)):
image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
if bgr:
image = image[:, :, ::-1].copy()
if instances[i].has('gt_boxes'):
bboxes = instances[i].gt_boxes.tensor.cpu().numpy()
scores = np.ones(bboxes.shape[0])
cats = instances[i].gt_classes.cpu().numpy()
else:
bboxes = instances[i].pred_boxes.tensor.cpu().numpy()
scores = instances[i].scores.cpu().numpy()
cats = instances[i].pred_classes.cpu().numpy()
for j in range(len(bboxes)):
if scores[j] > vis_thresh:
bbox = bboxes[j]
cl = COLORS[cats[j], 0, 0]
cl = (int(cl[0]), int(cl[1]), int(cl[2]))
cv2.rectangle(
image,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
cl, 2, cv2.LINE_AA)
if debug_show_name:
cat = cats[j]
txt = '{}{:.1f}'.format(
cat2name[cat] if cat > 0 else '',
scores[j])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
image, txt, (int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
if proposals is not None:
proposal_image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
if bgr:
proposal_image = proposal_image.copy()
else:
proposal_image = proposal_image[:, :, ::-1].copy()
bboxes = proposals[i].proposal_boxes.tensor.cpu().numpy()
if proposals[i].has('scores'):
scores = proposals[i].scores.detach().cpu().numpy()
else:
scores = proposals[i].objectness_logits.detach().cpu().numpy()
# selected = -1
# if proposals[i].has('image_loss'):
# selected = proposals[i].image_loss.argmin()
if proposals[i].has('selected'):
selected = proposals[i].selected
else:
selected = [-1 for _ in range(len(bboxes))]
for j in range(len(bboxes)):
if scores[j] > vis_thresh or selected[j] >= 0:
bbox = bboxes[j]
cl = (209, 159, 83)
th = 2
if selected[j] >= 0:
cl = (0, 0, 0xa4)
th = 4
cv2.rectangle(
proposal_image,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
cl, th, cv2.LINE_AA)
if selected[j] >= 0 and debug_show_name:
cat = selected[j].item()
txt = '{}'.format(cat2name[cat])
font = cv2.FONT_HERSHEY_SIMPLEX
cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
cv2.rectangle(
proposal_image,
(int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
(int(bbox[0] + cat_size[0]), int(bbox[1] - 2)),
(int(cl[0]), int(cl[1]), int(cl[2])), -1)
cv2.putText(
proposal_image, txt,
(int(bbox[0]), int(bbox[1] - 2)),
font, 0.5, (0, 0, 0), thickness=1,
lineType=cv2.LINE_AA)
if save_debug:
global cnt
cnt = (cnt + 1) % 5000
if not os.path.exists(save_debug_path):
os.mkdir(save_debug_path)
save_name = '{}/{:05d}.jpg'.format(save_debug_path, cnt)
if i < len(image_labels):
image_label = image_labels[i]
save_name = '{}/{:05d}'.format(save_debug_path, cnt)
for x in image_label:
class_name = cat2name[x]
save_name = save_name + '|{}'.format(class_name)
save_name = save_name + '.jpg'
cv2.imwrite(save_name, proposal_image)
else:
cv2.imshow('image', image)
if proposals is not None:
cv2.imshow('proposals', proposal_image)
cv2.waitKey()