Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
9c1631e
1
Parent(s):
49e8d07
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Install detectron2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# clone and install Detic
|
9 |
+
os.system("git clone https://github.com/facebookresearch/Detic.git --recurse-submodules")
|
10 |
+
os.chdir("Detic")
|
11 |
+
os.system("pip install -r requirements.txt")
|
12 |
+
|
13 |
+
# Some basic setup:
|
14 |
+
# Setup detectron2 logger
|
15 |
+
import detectron2
|
16 |
+
from detectron2.utils.logger import setup_logger
|
17 |
+
setup_logger()
|
18 |
+
|
19 |
+
# import some common libraries
|
20 |
+
import sys
|
21 |
+
import numpy as np
|
22 |
+
import os, json, cv2, random
|
23 |
+
from google.colab.patches import cv2_imshow
|
24 |
+
|
25 |
+
# import some common detectron2 utilities
|
26 |
+
from detectron2 import model_zoo
|
27 |
+
from detectron2.engine import DefaultPredictor
|
28 |
+
from detectron2.config import get_cfg
|
29 |
+
from detectron2.utils.visualizer import Visualizer
|
30 |
+
from detectron2.data import MetadataCatalog, DatasetCatalog
|
31 |
+
|
32 |
+
# Detic libraries
|
33 |
+
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
|
34 |
+
from centernet.config import add_centernet_config
|
35 |
+
from detic.config import add_detic_config
|
36 |
+
from detic.modeling.utils import reset_cls_test
|
37 |
+
|
38 |
+
# Build the detector and download our pretrained weights
|
39 |
+
cfg = get_cfg()
|
40 |
+
add_centernet_config(cfg)
|
41 |
+
add_detic_config(cfg)
|
42 |
+
cfg.MODEL.DEVICE='cpu'
|
43 |
+
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
|
44 |
+
cfg.MODEL.WEIGHTS = 'https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth'
|
45 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
|
46 |
+
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = 'rand'
|
47 |
+
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = True # For better visualization purpose. Set to False for all classes.
|
48 |
+
predictor = DefaultPredictor(cfg)
|
49 |
+
|
50 |
+
# Setup the model's vocabulary using build-in datasets
|
51 |
+
|
52 |
+
BUILDIN_CLASSIFIER = {
|
53 |
+
'lvis': 'datasets/metadata/lvis_v1_clip_a+cname.npy',
|
54 |
+
'objects365': 'datasets/metadata/o365_clip_a+cnamefix.npy',
|
55 |
+
'openimages': 'datasets/metadata/oid_clip_a+cname.npy',
|
56 |
+
'coco': 'datasets/metadata/coco_clip_a+cname.npy',
|
57 |
+
}
|
58 |
+
|
59 |
+
BUILDIN_METADATA_PATH = {
|
60 |
+
'lvis': 'lvis_v1_val',
|
61 |
+
'objects365': 'objects365_v2_val',
|
62 |
+
'openimages': 'oid_val_expanded',
|
63 |
+
'coco': 'coco_2017_val',
|
64 |
+
}
|
65 |
+
|
66 |
+
vocabulary = 'lvis' # change to 'lvis', 'objects365', 'openimages', or 'coco'
|
67 |
+
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
|
68 |
+
classifier = BUILDIN_CLASSIFIER[vocabulary]
|
69 |
+
num_classes = len(metadata.thing_classes)
|
70 |
+
reset_cls_test(predictor.model, classifier, num_classes)
|
71 |
+
|
72 |
+
os.system("wget https://web.eecs.umich.edu/~fouhey/fun/desk/desk.jpg")
|
73 |
+
|
74 |
+
def inference(img):
|
75 |
+
|
76 |
+
im = cv2.imread(img)
|
77 |
+
|
78 |
+
outputs = predictor(im)
|
79 |
+
v = Visualizer(im[:, :, ::-1], metadata)
|
80 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
81 |
+
cv2_imshow(out.get_image()[:, :, ::-1])
|
82 |
+
|
83 |
+
return Image.fromarray(np.uint8(out.get_image())).convert('RGB')
|
84 |
+
|
85 |
+
title = "Detectron 2"
|
86 |
+
description = "Gradio demo for Detectron 2: A PyTorch-based modular object detection library. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
87 |
+
article = "<p style='text-align: center'><a href='https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/' target='_blank'>Detectron2: A PyTorch-based modular object detection library</a> | <a href='https://github.com/facebookresearch/detectron2' target='_blank'>Github Repo</a></p>"
|
88 |
+
|
89 |
+
examples = [['desk.jpg']]
|
90 |
+
gr.Interface(inference, inputs=gr.inputs.Image(type="filepath"), outputs=gr.outputs.Image(type="pil"),enable_queue=True, title=title,
|
91 |
+
description=description,
|
92 |
+
article=article,
|
93 |
+
examples=examples).launch()
|