import gradio as gr import time import torch import scipy.io.wavfile from espnet2.bin.tts_inference import Text2Speech from espnet2.utils.types import str_or_none tagen = 'kan-bayashi/ljspeech_vits' vocoder_tagen = "none" text2speechen = Text2Speech.from_pretrained( model_tag=str_or_none(tagen), vocoder_tag=str_or_none(vocoder_tagen), device="cpu", # Only for Tacotron 2 & Transformer threshold=0.5, # Only for Tacotron 2 minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=1, forward_window=3, # Only for FastSpeech & FastSpeech2 & VITS speed_control_alpha=1.0, # Only for VITS noise_scale=0.333, noise_scale_dur=0.333, ) tagjp = 'kan-bayashi/jsut_full_band_vits_prosody' vocoder_tagjp = 'none' text2speechjp = Text2Speech.from_pretrained( model_tag=str_or_none(tagjp), vocoder_tag=str_or_none(vocoder_tagjp), device="cpu", # Only for Tacotron 2 & Transformer threshold=0.5, # Only for Tacotron 2 minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=1, forward_window=3, # Only for FastSpeech & FastSpeech2 & VITS speed_control_alpha=1.0, # Only for VITS noise_scale=0.333, noise_scale_dur=0.333, ) tagch = 'kan-bayashi/csmsc_full_band_vits' vocoder_tagch = "none" text2speechch = Text2Speech.from_pretrained( model_tag=str_or_none(tagch), vocoder_tag=str_or_none(vocoder_tagch), device="cpu", # Only for Tacotron 2 & Transformer threshold=0.5, # Only for Tacotron 2 minlenratio=0.0, maxlenratio=10.0, use_att_constraint=False, backward_window=1, forward_window=3, # Only for FastSpeech & FastSpeech2 & VITS speed_control_alpha=1.0, # Only for VITS noise_scale=0.333, noise_scale_dur=0.333, ) def inference(text,lang): with torch.no_grad(): if lang == "english": wav = text2speechen(text)["wav"] scipy.io.wavfile.write("out.wav",text2speechen.fs , wav.view(-1).cpu().numpy()) if lang == "chinese": wav = text2speechch(text)["wav"] scipy.io.wavfile.write("out.wav",text2speechench.fs , wav.view(-1).cpu().numpy()) if lang == "japanese": wav = text2speechjp(text)["wav"] scipy.io.wavfile.write("out.wav",text2speechjp.fs , wav.view(-1).cpu().numpy()) return "out.wav" title = "ESPnet2-TTS" description = "Gradio demo for ESPnet2-TTS: Extending the Edge of TTS Research. To use it, simply add your audio, or click one of the examples to load them. Read more at the links below." article = "

ESPnet2-TTS: Extending the Edge of TTS Research | Github Repo

" examples=[['This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results',"english"],['水をマレーシアから買わなくてはならないのです。',"japanese"],['对英语和日语语料库的实验评估表明,我们提供的模型合成了与真实情况相当的话语,实现了最先进的 TTS 性能',"chinese"]] gr.Interface( inference, [gr.inputs.Textbox(label="input text",lines=10),gr.inputs.Radio(choices=["english", "chinese", "japanese"], type="value", default="english", label="language")], gr.outputs.Audio(type="file", label="Output"), title=title, description=description, article=article, enable_queue=True, examples=examples ).launch(debug=True)