Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
7c0b7db
1
Parent(s):
8c22980
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("git clone https://github.com/v-iashin/SpecVQGAN")
|
3 |
+
os.system("pip install pytorch-lightning==1.2.10 omegaconf==2.0.6 streamlit==0.80 matplotlib==3.4.1 albumentations==0.5.2 SoundFile torch")
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
import soundfile
|
7 |
+
import torch
|
8 |
+
|
9 |
+
os.chdir("SpecVQGAN")
|
10 |
+
|
11 |
+
from feature_extraction.demo_utils import (calculate_codebook_bitrate,
|
12 |
+
extract_melspectrogram,
|
13 |
+
get_audio_file_bitrate,
|
14 |
+
get_duration,
|
15 |
+
load_neural_audio_codec)
|
16 |
+
from sample_visualization import tensor_to_plt
|
17 |
+
from torch.utils.data.dataloader import default_collate
|
18 |
+
|
19 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
20 |
+
|
21 |
+
|
22 |
+
model_name = '2021-05-19T22-16-54_vggsound_codebook'
|
23 |
+
log_dir = './logs'
|
24 |
+
# loading the models might take a few minutes
|
25 |
+
config, model, vocoder = load_neural_audio_codec(model_name, log_dir, device)
|
26 |
+
|
27 |
+
def inference(audio):
|
28 |
+
# Select an Audio
|
29 |
+
input_wav = audio.name
|
30 |
+
|
31 |
+
# Spectrogram Extraction
|
32 |
+
model_sr = config.data.params.sample_rate
|
33 |
+
duration = get_duration(input_wav)
|
34 |
+
spec = extract_melspectrogram(input_wav, sr=model_sr, duration=duration)
|
35 |
+
print(f'Audio Duration: {duration} seconds')
|
36 |
+
print('Original Spectrogram Shape:', spec.shape)
|
37 |
+
|
38 |
+
# Prepare Input
|
39 |
+
spectrogram = {'input': spec}
|
40 |
+
batch = default_collate([spectrogram])
|
41 |
+
batch['image'] = batch['input'].to(device)
|
42 |
+
x = model.get_input(batch, 'image')
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
quant_z, diff, info = model.encode(x)
|
46 |
+
xrec = model.decode(quant_z)
|
47 |
+
|
48 |
+
print('Compressed representation (it is all you need to recover the audio):')
|
49 |
+
F, T = quant_z.shape[-2:]
|
50 |
+
print(info[2].reshape(F, T))
|
51 |
+
|
52 |
+
|
53 |
+
# Calculate Bitrate
|
54 |
+
bitrate = calculate_codebook_bitrate(duration, quant_z, model.quantize.n_e)
|
55 |
+
orig_bitrate = get_audio_file_bitrate(input_wav)
|
56 |
+
|
57 |
+
# Save and Display
|
58 |
+
x = x.squeeze(0)
|
59 |
+
xrec = xrec.squeeze(0)
|
60 |
+
# specs are in [-1, 1], making them in [0, 1]
|
61 |
+
wav_x = vocoder((x + 1) / 2).squeeze().detach().cpu().numpy()
|
62 |
+
wav_xrec = vocoder((xrec + 1) / 2).squeeze().detach().cpu().numpy()
|
63 |
+
# Creating a temp folder which will hold the results
|
64 |
+
tmp_dir = os.path.join('./tmp/neural_audio_codec', Path(input_wav).parent.stem)
|
65 |
+
os.makedirs(tmp_dir, exist_ok=True)
|
66 |
+
# Save paths
|
67 |
+
x_save_path = Path(tmp_dir) / 'vocoded_orig_spec.wav'
|
68 |
+
xrec_save_path = Path(tmp_dir) / f'specvqgan_{bitrate:.2f}kbps.wav'
|
69 |
+
# Save
|
70 |
+
soundfile.write(x_save_path, wav_x, model_sr, 'PCM_16')
|
71 |
+
soundfile.write(xrec_save_path, wav_xrec, model_sr, 'PCM_16')
|
72 |
+
return './tmp/neural_audio_codec/vocoded_orig_spec.wav', "./tmp/neural_audio_codec/"+f'specvqgan_{bitrate:.2f}kbps.wav'
|
73 |
+
|
74 |
+
title = "Anime2Sketch"
|
75 |
+
description = "demo for Anime2Sketch. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
76 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.05703'>Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis</a> | <a href='https://github.com/Mukosame/Anime2Sketch'>Github Repo</a></p>"
|
77 |
+
|
78 |
+
gr.Interface(
|
79 |
+
inference,
|
80 |
+
gr.inputs.Audio(type="file", label="Input Audio"),
|
81 |
+
[gr.outputs.Audio(type="file", label="Original audio"),gr.outputs.Audio(type="file", label="Reconstructed audio")],
|
82 |
+
title=title,
|
83 |
+
description=description,
|
84 |
+
article=article,
|
85 |
+
enable_queue=True
|
86 |
+
).launch(debug=True)
|